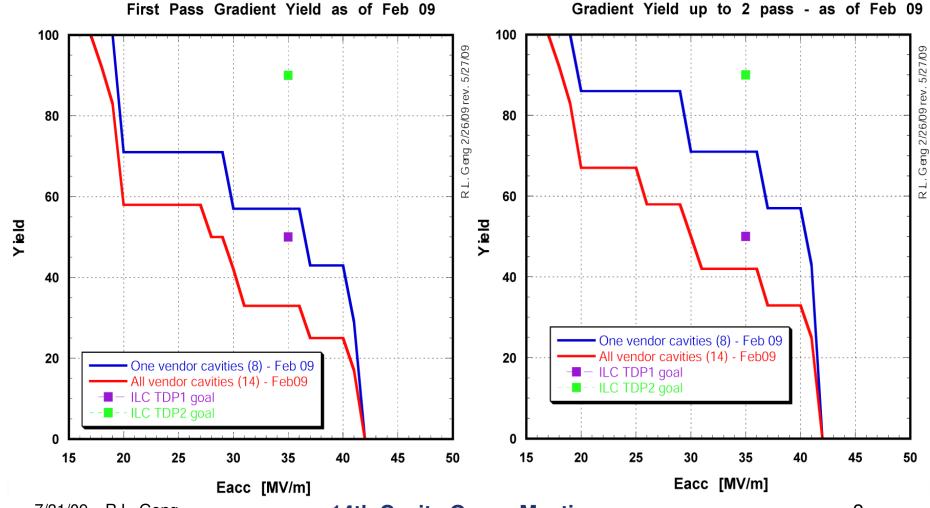


Global Cavity Data Base & Gradient Yield

Rongli Geng Jefferson Lab


Two-Pass Yield Proposal @ AD&I Mtg

First-pass result decides path forward:

- Move on for S1 if spec met
- Re-process (Re-HPR; Re-EP; Local repair) if spec not met

An example based on real data from JLab

Gradient Yield up to 2 pass - as of Feb 09

Global Data Collection

- Q: which cavity should be included?
 - cavities made/processed w/ "standard recipe"
 - Truth is there is no uniform specification for cavity fabrication or processing
 - Finished EBW spec?
 - EP process spec?
 - End surface spec?
 - Obvious variability examples
 - Material from different vendors
 - Cavity shape difference
 - EBW weld prep & orientation
 - Pre-EP surface treatment
 - EP parameters and protocols, EP orientation
 - Hydrogen out-gassing time and temperature

Global Data Collection

- Proposition 1: all cavities fabricated and processed according to following rough steps
 - Fine grain sheet material
 - Deep drawing & EBW
 - Initial field flatness tuning
 - Bulk EP for heavy removal
 - H2 removal with vacuum furnace
 - Final tuning field flatness (and frequency)
 - Final EP for light removal
 - Post-EP cleaning
 - Clean room assembly
 - Low temperature bake-out
 - 2K RF test

Global Data Collection

- Proposition 2: accept known variabilities
 - Fine grain niobium irrespective of vendors
 - EBW irrespective of prep design welding para.
 - Cavities w/ or without helium tank
 - With or without pre-EP treatment (BCP, CBP...)
 - EP irrespective of parameters & protocols
 - Horizontal EP or vertical EP
 - H2SO4/HF/H2O ratio, pre-mixing or on-site mixing
 - Cell temp. control or return acid temp. control
 - W/ or w/o acid circulation after voltage shut off
 - Post-EP cleaning: ER or USC or H2O2 rinsing
 - H2 out-gassing irrespective of temp. & time
 - HPR irrespective of nozzle style, HPR time

First-Pass Data

- What it is
 - First RF test result following all steps applied
 - Should be the final power rise data
 - as some cavities "processing" well
- What it is not
 - May not necessarily the first RF test of the cavity
 - Example: some cavities were tested before low temperature bake-out for FE screening purpose
 - Should not include data of cavities with known material flaw, equipment malfunctioning, human error etc.

Second-Pass Data

- What it is
 - Cavities failed to meet ILC gradient and Q spec
 - Re-treated and re-tested for a second time; retreatment can be:
 - Re-HPR (for FE reduction)
 - Re-EP (for FE reduction or defect removal)
 - Post-purification (for defect stabilization) ?
 - Repair (local grinding, local re-melting...) followed by reprocess and re-test (for defect removal)
- What it is not
 - Cavities already passing ILC spec
 - Re-test without physical changes on RF surface (e.g. T-mapping test)

Beyond Two Pass...

- Some cavities may be re-processed and retested more than two passes anyway for various reasons
- We may still want to monitor these data for purpose of learning.
- Cavity exchange effort falls into this category
 - For cross checking facilities
 - For cross checking processing variability
 - For cross-calibrating measurement error bars

Challenges and Opportunities

- Challenge: Integrating globally data with known variability in cavity fab., proc. & handling
- It is possible yield of sub-set data may be different
 - materials from different vendors
 - cavities manufactured by different vendors
 - cavities processed at different labs
- Provides reality of "global" gradient
- True leaning opportunities toward "standard recipe"
- This global data base effort will be very useful and success is necessary
- Thank Camille for her leadership & excellent start

Comments

 Should include cavities even with known defect – but should be flagged not for gradient yield evaluation