

2008 ECAL MIP Calibration

Hengne Li

LAL Orsay

Hengne LI @ LAL

CALICE Analysis and Software, Sep. 1, 2009

Outline

- Introductory Remarks
- □ Stability of Residual Pedestal
- Muon Selection
- □ Fitting
- Corrections for Dead Pads and Fitting Failures

2

- □ Systematic Errors
- Quality Check: Uniformity and Stability
 - Summary

Introductory Remarks

MIP Calibration of ECAL:

Assign a **standard energy scale** to the electronic readout from the silicon active medium **of each pad**.

The Standard Energy Scale:

Energy deposition of **minimal ionizing muons**, defined as a **MIP**. A constant for a given the thickness of the material.

Calibration Constants:

1 MIP= ? ADC counts, for each pad. Extract by a fitting using a convolution of Landau with Gaussian, where the Landau MPV gives the calibration constant.

Following previous works done by:

Goetz Gaycken, Marcel Reinhard

Data Samples:

Muon data triggered with 20x20 scintillator counter, July 2008 FNAL About 520k events after reconstruction.

Stability of Residual Pedestal

After Pedestal Subtraction, the Stabilities of Residual Pedestals and Noise are checked:

- Taking the signals recorded by each pad without muon hit.
- Fit with a Gaussian function for each pad
 - mean of the Gaussian: the Residual Pedestal
 - sigma of the Gaussian: the Noise

Muon Selection

Muon Selection:

- 1) Fit to the hits as a straight line
- 2) Number of hits in the straight line must be greater than 10
- 3) Distance between two hits in consecutive layers must be less than 2 cm

Corrections for Dead Pads and Fitting Failures

7

Number of Dead Pads: 476

Number of Fitting Failures: 47

A fitting failure, if any one of the following criteria is not satisfied:

- 1) MPV within (37.5, 53.5) ADC
- 2) Stat. Err. less than 2 ADC
- 3) Noise within (2, 14) ADC
- 4) Chi2/ndf within (0.5, 3)

Corrections for fitting failures:

1) Due to abnormal residual pedestal:

- Refit together with another Gaussian to account for the residual pedestals

- 14 pads are recovered.
- 2) Short in statistics:

Hengne LI @ LAL

- 33 pads, treat as dead pads

Map of Dead Pads, for all 30 layers

CALICE Analysis and Software, Sep. 1, 2009

Corrections for Dead Pads and Fitting Failures

Corrections for Dead Pads:

1) If they behave at random:

- calibration constant: replaced by the mean of the same chip.
- error on calibration constant: the corresponding RMS. (on average for all chips: 1.31±0.03 ADC)

2) If they behave as a whole dead chip:

- calibration constant: replaced by the mean of the same PCB
- error on calibration constant: the corresponding RMS. (on average for all PCBs: 1.57±0.03 ADC)
- 3) In case more than half the pads in a PCB are dead:
 - calibration constant: replaced by the mean of the other PCB in the same slab.
 - error on calibration constant: The RMS of the difference between the mean of one PCB

and each pad of the other PCB in the same slab.

This RMS is 1.81±0.01 ADC, measured using all slabs.

Resulting Calibration Constants and Noise

Hengne LI @ LAL

CALICE Analysis and Software, Sep. 1, 2009

Systematic Errors

1) Due to Residual Pedestals:

- mean of residual pedestals over all pads:

-0.058±0.003 ADC

2) Due to Different Fitting Ranges:

- Comparing the results with that using the entire range.
- difference for each pad: mean: 0.258±0.004 ADC

RMS : 0.366±0.003 ADC

(systematic error)

3) Due to Timing Offsets between Different Triggers:

- Reason:
 - Difference in Trigger response time
 - Difference in Hold Value
- Systematic Error:

When apply the calibration constants obtained with 20x20 trigger, to the data triggered with 10x10&Cerenkov.

- Examine using minimal ionizing pions triggered with 10x10&Cerenkov:
 - Difference: Mean: 0.97±0.02 ADC
 - RMS : 1.19±0.02 ADC
 - Take the mean as the systematic error.

MPV difference between 20x20 muon and 10x10&Cerenkov pion

Uniformity and Stability

Uniformity: Calibration Constants as a function of Pad Index, with error bar.

Stability is checked by comparing with 2006 CERN Aug. and Oct. ones.

Correlation with Oct. 2006 CERN Correlation Coefficient: 83.76%

Software, Sep. 1, 2009

Uniformity and Stability

Difference on the calibration constants compared with 2006 CERN Aug. and Oct. ones.

 $Pad \ ID = 6 \times 36 \times K + 36 \times (2 \times W_x + W_y - 1) + (6 \times P_x + P_y)$

Summary

□ MIP Calibration for 2008 FNAL July period is finished.

□9211 out of 9720 pads are calibrated

□476 dead pads and 33 fitting failures: calibration constants are replaced.

□Calibration Constants on average: 47.61 ±0.52(stat.) ±0.37(sys.) ADC

□ if apply on 10x10&Cerenkov, total systematic error : ±1.04(sys.) ADC

Uniformity and Stability are checked

Higher statistical error compared with 2006 CERN (two times higher), due to lower statistics