

Status Report of the Validation of TC

(alias MIMOSA-26)

Marc Winter (IPHC/Strasbourg)

on behalf of the IPHC/Strasbourg – IRFU/Saclay collaboration

- General features
- Type of tests performed
- Laboratory test results : ▷ Analog output

- Discriminated output
- ▶ Full chain output

- Next steps & 2010 Perspectives
- Summary

General Features

Sensor manufacturing :

- strule AMS-0.35 fabrication process : \sim 15 μm thin epitaxial layer
- 3 wafers fabricated (up to 3 additional wafers still available)
- * 77 chips per wafer

Status of sensor delivery :

- * 3 wafers back from foundry at CMP since first half of February 2009
- st 1/2 wafer (41 sensors) diced and sent to IPHC ightarrow received \gtrsim Feb. 17th
- # functionnality tests started in last decade of February 2009
- strule more recently: 1 wafer thinned to \sim 120 μm and diced
 - → 77 sensors received June 15th (1 broken)

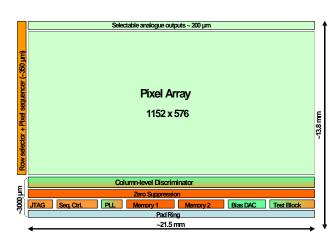
ESC Meeting, –2–

Prominent Test Features

Functionnality tests (level 0) :

- ★ JTAG → chip alive ? → 1 faulty chip out of 21+6 bonded
 ▷ 1 chip with 1 raw & 1 col. dead 3 chips with 1 raw or 1 col. dead
- * pattern of sensor output (frame header & trailer)

Analog output characterisation :


- * allows characterising pixel matrix and investigating (directly) pixel pbs
- * activated from sensor side (top) opposite to digital r.o. side (bottom) >--->
- * 2 r.o. possibilities: 8 columns at right or sweeping through pixel array
- * provides pixel noise and uniformity over sensitive area, spots dead or hot pixels, etc.

Digital output characterisation (4 configurations):

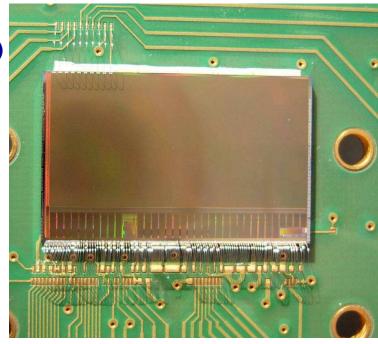
- discriminators alone, i.e. isolated from pixel array (internal voltage injection)
 - \Longrightarrow scan threshold uniformity (offset dispersion & temporal noise)

(also: check possibility to disconnect individual discriminators ≡ disconnect pbtic columns)

- * discriminators connected to pixel array \Rightarrow overall FPN and thermal noise
- * zero-suppression logic and output memories (SUZE-01) alone (JTAG or fired pixel cheater)
- \divideontimes test of complete chain : pixel array \oplus discriminators \oplus zero-suppresion \oplus output memories

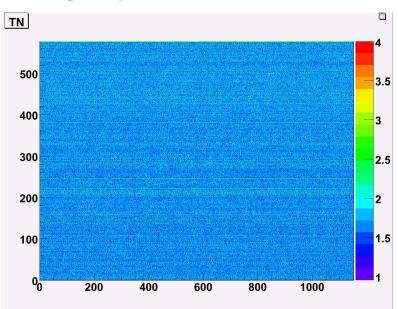
ESC Meeting, -3-

Reminder: Prominent TC Characteristics

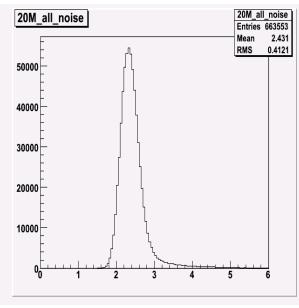

- lacktriangle TC \equiv full scale sensor with integrated suppression
 - st MIMOSA-22 (binary outputs) complemented with \varnothing (SUZE-01)
 - \star Active surface: 1152 columns of 576 pixels (21.2 x 10.6 mm²)
 - st Pitch : 18.4 $\mu m
 ightarrow \sim$ 0.7 million of pixels $ightarrow ~\sigma_{sp} \gtrsim$ 3.5 μm
 - * Integration time \lesssim 110 $\mu s \mapsto \sim$ 10 4 frames / second \Rightarrow suited to > 10 6 particles/cm 2 /s
 - * \emptyset in 18 groups of 64 col. allowing \leq 9 "pixel strings" / raw
 - st Sensor full dimensions : \sim 21.5 x 13.8 mm²
 - strule Data throughput: 1 output at \geq 80 Mbits/s

or 2 outputs at 40/80 Mbits/s (all tests performed with 2 imes 80 Mbits/s)

Fabricated in AMS-0.35 technology:


- ★ Sensor expected to equip several EUDET BT copies (

 → I.P. handling ?)
- * Architecture = baseline for designing sensors adapted to STAR, CBM and ILC vertex detectors



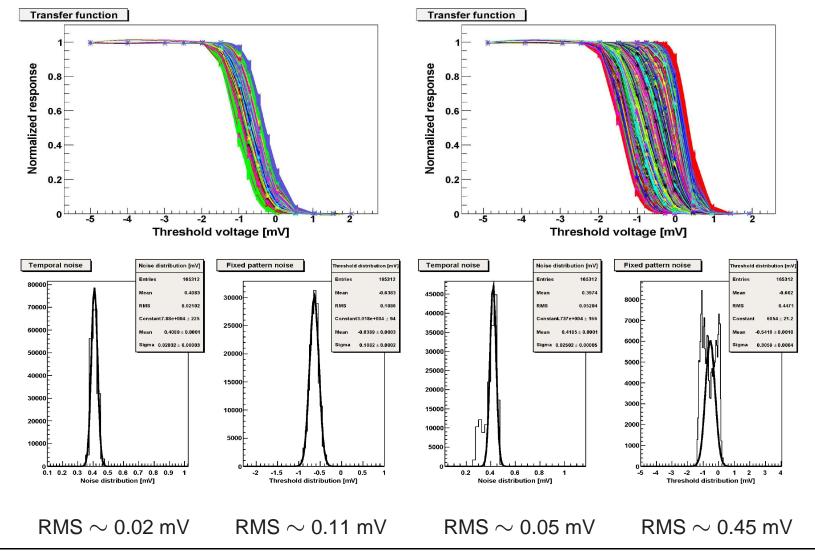
Analog Output Test Results

Analog response studied for 8 different sensors :

lacktriangledown CCE with 55 Fe source : comparison with MIMOSA-22

Cluster size	seed	2x2	3x3	5x5
MIMOSA-26	22 %	55 %	73 %	83 %
MIMOSA-22	22 %	58 %	75 %	86 %

ESC Meeting, -5-

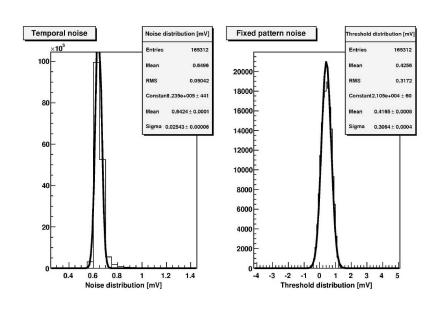


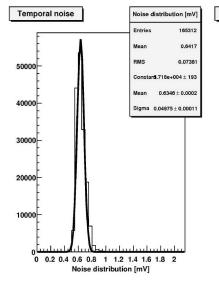
Analog Output Test Results: Summary

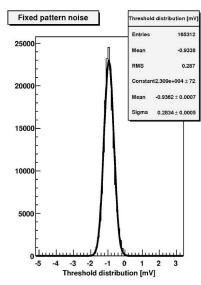
- * All pixels are alive (none is dead!)
- * Noise is uniform accross the 2 cm² sensitive area
- * Satisfactory operation from 80 MHz (nominal) down to 20 MHz (and below)
- strule Noise and CCE performances are \sim identical to those of MIMOSA-22
- * All 8 sensors exhibit similar behaviours

Isolated Discriminator Output Test Results

- Digital output studied on 15+6 different sensors :
- Noise performance assessed separately for each of the 4 groups of 288 columns (nominal r.o. speed)
- * Example of sub-array A and C (chip Nr.6)


ESC Meeting, -7-

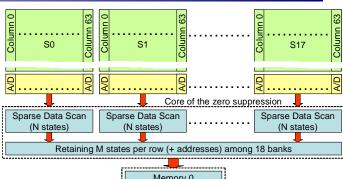

Summary of Isolated Discriminator Output Test Results


- strule Typical value of discriminator thermal noise \lesssim 0.3–0.4 mV
- * Discriminator FPN \leq 3 e⁻ ENC (i.e. 0.15 mV)
- strule Results are \sim identical to MIMOSA-22 values in sub-array A, and slightly worse in sub-array B, C, (D)
 - ⇒ All discriminators are operational at nominal speed (and below)

Analog Discriminated Output Test Results

- Digital output studied on 15+6 (resp. 4) different sensors at 80 (resp. 20) MHz:

- st Typical value of total temporal noise \sim 0.6–0.7 mV
- strule Typical value of total FPN noise \sim 0.3–0.4 mV
- * Results are \sim identical to MIMOSA-22 values (N \lesssim 12–13 e $^-$ ENC)
- * 80 \rightarrow 20 MHz: pixel noise \nearrow & discri. noise \searrow \Rightarrow mild overall change
- \Rightarrow Array of 660,000 pixels coupled to 1152 discriminators works \sim as expected


ESC Meeting, —9–

Zero-Suppression and Output Memories Test Results

Conclusion of the Mimosa 26 Ø Core test result

Memory 0

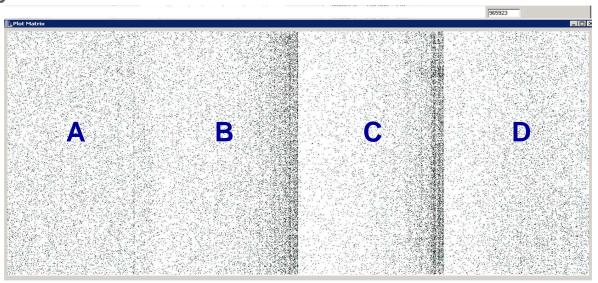
Memory 1

Serial transmission

- The pixel array has 575 rows x 1152 columns.
- Zero suppression is based on row by row sparse data scan readout
- Functionality tests:
 - Encoding addresses (line, column) of the hit function (systematic and randomly),
 - Encoding of the states (0 to 9 STATES) in all column positions of the 18 banks (systematic and randomly),
 - Encoding of the shape of the state: 1 to 4 consecutive pixels (systematic and randomly),
 - Checking of the continuity between blocks,
 - Encoding patterns with more than 9 states detected (overflow)
 - Working Frequency range: 10 MHz to 115 MHz.
 - Output modes: 2 outputs 80 MHz, 1 Output 80 MHz, 2 outputs 40 MHz.
- 3 patterns tested 7 millions times without errors
- Robustness test: 199 frames x 10 000 random patterns test at 80 MHz without errors.

26/05/2000

IPHC G.Doziere & Team Test


ESC Meeting, -10-

Full Chain Test Results

Full chain signal delivery studied on several different sensors :

Ex: Chip-6 output for 5 N threshold (10,000 frames)

Fake hit rate due to pixel noise fluctuations at 80 MHz

Discri. threshold	4 N	5 N	5.5 N	6 N	8 N	10 N
$N_{pix}>$ threshold (10 $^{-4}$)	\lesssim 8	\sim 1.5	\sim 1	0.5	0.1	0.03

- * Varying operating T from $+20^{\circ}$ C to $+40^{\circ}$ C \longrightarrow essentially no change (fake rate is \sim stable)
- * Multi-hit emulation of pixel array checked to generate the right memory output pattern

Full Chain Multi Chip Test Results

Running 3 or 6 sensors simultaneously :

- st Test with 6 sensors on frame header and trailer during 14 hours (\sim 10 8 frames without error)
- * Test with 3 sensors on zero-supp. data (1 emulated hit/line) running during 14 hours (2.3·10⁶ frames without error)

Running telescope of 2 sensors exposed to beta source:

- * correlation between impacts in both layers clearly observed
- * system ready for beam tests at CERN

Running 3 sensors in EUDET BT demonstrator :

- * telescope of 3 TC chips mounted as DUT in BT demonstrator in July (see talk by Ingrid)
- st BT tracks reconstructed in the 3 planes \Rightarrow residues compatible with $\sigma_{sp}\gtrsim$ 3.5 μm

ESC Meeting, –12–

Summary of Imperfections Observed

Observed anomalies :

- strule discriminator threshold non-uniformity \Rightarrow understood: put threshold \gtrsim 5.5 N in group B, C, (D)
- ★ incomplete cluster encoding in raw 576 ⇒ understood
- * r.o. frequency dependence of pixel temporal N (calib. peak) \Rightarrow due to integrated test μ circuitry ?
- * etc.

Comments:

- * only modest disturbance expected on beam telescope operation
- * part of anomalies suspected to come from too weakly optimised measurement procedures
- * their study is essentialy motivated by the design plans of coming sensors which are derived from MIMOSA-26: STAR, CBM, ILC

ESC Meeting, –13–

Next Steps

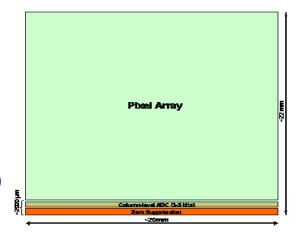
Complement laboratory tests :

- * Improve understanding of anomalies (for MIMOSA-26 extensions)
- \divideontimes Performances of 50 μm thin sensors
- * Radiation tolerance?

Beam tests:

- * Period: 1st half of Septembre 2009 at CERN-SPS (T4-H6)
- * Objectives:
 - ightharpoonup synchronous running of 6 (120 μm thin) sensors, ...
 - $ightharpoonup \epsilon_{eff.}$ vs fake rate for various discriminator thresholds
 - $\simeq \sigma_{SP}$, cluster characteristics for various discriminator thresholds

ESC Meeting, -14-


Ultimate Sensors

Use 2010 to upgrade the telescope with new sensors :

- $*\sim$ double sensitive area
- * correct or mitigate MIMOSA-26 design weaknesses (discri. ramps, row 575 feature, a.s.o.)
- * improve ionising radiation tolerance (based on MIMOSA-22bis & MIMOSA-22ter tests)

⇒ Replace MIMOSA-26 with ULTIMATE sensor developed for STAR HFT :

- * 1152 columns of 1024 pixels
 - \Rightarrow 21 imes 19 mm 2 sensitive area & \sim 200 μs integration time
- * output memories about 2.5 times larger
- * steering and read-out fully compatible with MIMOSA-26 r.o. chain
- ★ fabrication in 1st semestre of 2010 ⇒ telescope running by end of 2010
- * sensor fabrication and thinning costs covered via IPHC-Strasbourg

ESC Meeting, -15-

SUMMARY

TC (alias MIMOSA-26) qualification:

- sensor has been quite extensively studied in lab (including synchronous operation of 6 chips)
- MIMOSA-22 performances reproduced on complete sensitive surface
- ightharpoonup fabrication plus (120 μm) thinning yield \sim 90 %
- all imperfections found are affordable (will be corrected in sensors derived from MIMOSA-26)
- running 3 sensors mounted on BT demonstrator successful
- **⇒** Overall performances within specifications **⇒** sensor validated for BT commissionning

What remains to be done

- ightharpoonup complementary lab tests : yield for 50 μm thin sensors, rad. tol. x-check, etc.
- ightharpoonup beam tests (Sept.) : 6 sensors (120 μm thin) $\longrightarrow \epsilon_{eff}$, fake rate & σ_{SP} vs discri. threshold

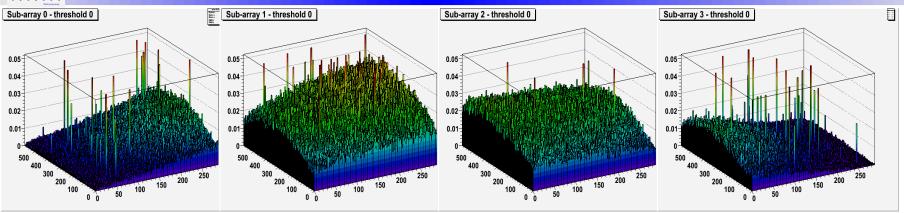
Motivation for an upgrade:

- added value: twice sensitive area, correction of imperfections, better ionising rad. tol., ...

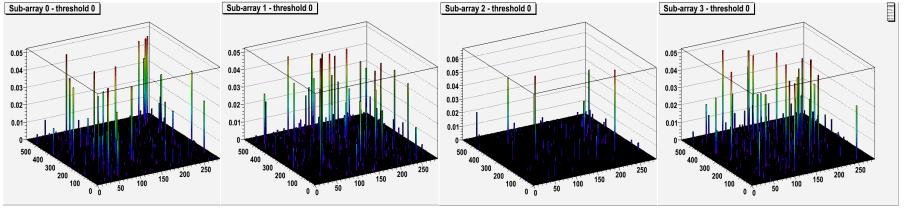
ESC Meeting, -16-

Illumination with ⁵⁵Fe source

MIMOSA-26 multi-sensor test


Reminder: MIMOSA-22 test results

ESC Meeting,


-17-

Illumination with 55 Fe Source

Avec source

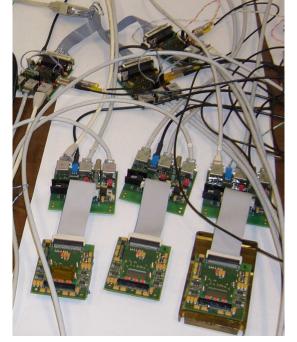
sans source

Chip 8
Frequence 80 MHz
coupure sur bruit = 10

ESC Meeting, -18-

Integration Tests: Steering & Readout of N x Mimosa 26

Pattern generator (Tektro DG2020A)


Clock X 3 •Start X 3

DAQ NI PXI 6562 Board

3 x Mimosa 26 Readout D0, D1 @ 80 MHz

Goal / Method

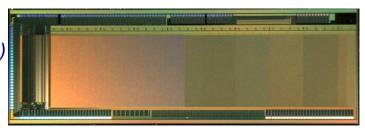
- ▶ How to run more than one Mimosa 26 on a Telescope like DAQ system?
 - ► How to start all Mimosa 26 at the same time?
 - ▶ Will they keep synchronization over a long run?
 - **►** Trigger handling
- •Clock & Sync X 1 ► How to perform this test ?
 - ▶ Star distribution of clock and external Start to all Mimosa 26
 - ► External Start source synchronized / CLK falling edge
 - ► Acquisition of all Mimosa 26 by the same DAQ board (NI PXI 6562)

Tests Done / Results

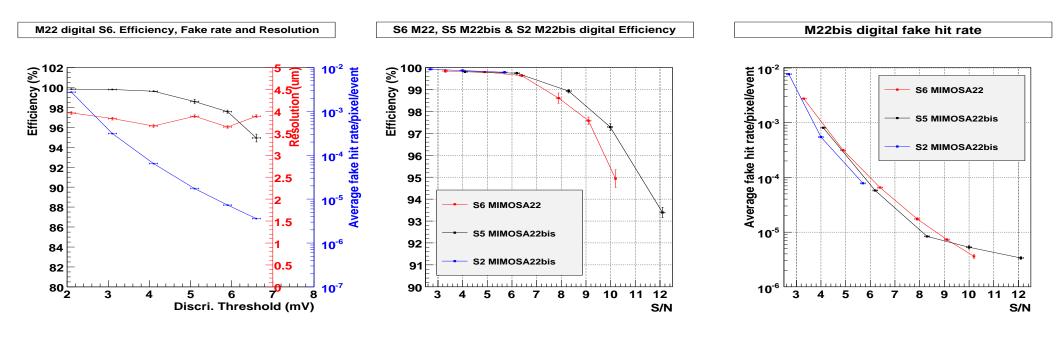
- ► Test on Header & Trailer with 3 Mimosa 26
 - ▶ 40 10⁶ frames without error → Test stopped after ~ 14H00
- ► Test on ZS data (one emulated hit / line) with 3 Mimosa 26
 - ▶ 2,3 10^6 frames without error → Test stopped after ~ 14H00
- ▶ Next steps ...
 - ► Test with six Mimosa 26
 - **►** Trigger handling

11/06/2009

EUDET Meeting, Geneva June 2009


IPHC - DRS Gilles CLAUS & Test Team

ESC Meeting. -19-



Performances of MIMOSA-22

- MIMOSA-22 : ♦ fabricated in 2007/08 (coll. with IRFU/Saclay)
 - \diamond 136 col. of 576 pixels (18.4 μm pitch, integrated CDS)
 - ♦ 128 col. ended with an integrated discriminator
 - integrated JTAG controller

Tests at CERN-SPS (\sim 120 GeV π^-) in 2008 $\;\;
ightarrow\;\;$ results of different sub-arrays

▷ ► ► Architectures of pixel (integrated CDS) and of full chain made of "columns ended with integrated discri." validated at real scale

ESC Meeting, –20–