The "Super" LHC

Jordan Nash – EUDET meeting October 2009

R/D Challenges for the SLHC

- Why a "Super" LHC
 - Potential Physics motivations
 - Implications for the detectors
- Upgrades to the Detectors

SLHC is about the maximizing the output of LHC physics

- We should be led by getting the best physics out of any upgraded machine/detector
 - Not by the highest peak luminosity
 - Even maximum integrated luminosity may not be the most important metric
 - Issues
 - Integrated luminosity
 - Backgrounds
 - Acceptance
 - Pile-up

Some Physics themes

- Different physics channels require different conditions
- Three main directions for Phase II
 - Damn the torpedos FULL Luminosity
 - Maximum of quality luminosity
 - Luminosity leveling?
 - Forward acceptance
- We won't know which is the most important until we have first data from the LHC
 - Important not to eliminate a physics opportunity until we are sure it makes sense to do so
 - We have to be ready to build detectors for any of these scenarios

SLHC Physics: Extra gauge bosons

J. Nash - SLHC 20 October 2009

SUSY searches - measurements

Here we need a lot of Integrated Luminosity, but needs to be high quality. Lower pile-up may be important.

- SLHC statistics will be vital in reaching understanding of complicated SUSY channels
 - Sparticles seen, but statistics for reconstruction limited at LHC
- Performance of the detector here is vital
 - B-tagging
 - Lepton id

What if no Higgs is found?

Forward tagging is essential

E (jet)

Will need to look at WW scattering

Some mechanism required to avoid unitarity

Practical reasons to upgrade the LHC

- Hardware ageing
 - Machine elements
 - Detector elements
- Foreseeable luminosity evolution

⇒ a major luminosity upgrade in ~2017 (SLHC)

LHCC – 1 July, 2008

J. Nash - SLHC 20 October 2009

parameter	symbol	nominal	ultimate	ph. I	ES	FCC	LE	LPA
transverse emittance	ε [μm]	3.75	3.75		3.75	3.75	1.0	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7		1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25		25	25	25	50
beam current	I [A]	0.58	0.86		0.86	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss		Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55		7.55	7.55	7.55	11.8
beta* at IP1&5	β* [m]	0.55	0.5	0.3	0.08	0.08	0.1	0.25
full crossing angle	θ _c [μrad]	285	315	410	0	0	311	381
Piwinski angle	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	1.26	0	0	3.2	2.0
geometric reduction		0.84	0.80	0.62	0.77	0.77	0.30	0.48
peak luminosity	$L [10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1	2.3	3.0	14.0	14.0	16.3	11.9
peak events per #ing		19	44	57	266	266	310	452
initial lumi lifetime	τ _L [h]	22	14	11	2.2	2.2	2.0	4.0
effective luminosity (T _{turnaround} =10 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	1.07	2.3	2.3	2.5	2.7
	T _{run,opt} [h]	21.2	17.0	14.9	6.9	6.9	6.4	9.0
effective luminosity (T _{turnaround} =5 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	1.38	3.4	3.4	3.7	3.7
	T _{run,opt} [h]	15.0	12.0	10.5	4.9	4.9	4.5	6.3
e-c heat SEY=1.4(1.3)	P [W/m]	1.1 (0.4)	1.0 (0.6)		1.0 (0.6)	1.0 (0.6)	1.0 (0.6)	0.4 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25		0.25	0.25	0.25	0.36
image current heat	P _{IC} [W/m]	0.15	0.33		0.33	0.33	0.33	0.78
gas-s. 100 h τ_b	P _{gas} [W/m]	0.04	0.06		0.06	0.06	0.06	0.09
extent luminous region	σ_{l} [cm]	4.5	4.3	J3Na	sh - SL JI C	20 Octob	er 2009 1.6	4.2
comment		nominal	ultimate		D0+CC	crah		wire com

Scenario for Peak luminosity...

Integrated luminosity...

What are the key timescales/issues?

Phase I

- How well do detector components handle the increasing luminosity?
 - Both instantaneous and integrated effects
- What detector elements will need replacement/modification to cope?
 - Detectors will record >500 fb⁻¹, can they withstand this?

Phase 2

- What detector elements will need replacement?
- What do machine plans imply for interaction regions
- Is there a requirement for a long shutdown?
 - How long 18 Months? (I Full calendar year without beam +)
 - When sometime after the middle of the next decade
 - Developing and building new tracking detectors will take many years
 - □ We have to plan this now in order to have any chance of running detectors with high luminosity
 - ATLAS and CMS have to agree on the dates
 - No sense in having two long shutdowns
 - □ Reach 700 fb⁻¹(potential limit)
 - □ Likely >2017

Detector Challenges CMS from LHC to SLHC

0. Mash - OLHO 20 October 2009

Radiation environment for trackers

Except for the very innermost layers many current technologies should survive SLHC

Radiation Dose in Inner Detectors

J. Nash - SLHC

Phase I issues for tracking

- Rough estimate of pixel layer lifetimes
 4cm layer should survive a minimum of 200fb⁻¹
- Will have to replace the pixel detector during phase I
 - How often?
 - How much to replace?
 - New features
- CMS: Looking at reducing the material in the replacement pixel detector, and potentially adding a fourth layer
- ATLAS: Can't remove the current pixel detector, will remove beampipe, and then insert new beampipe with an inner layer attached
- Outer trackers looks robust to survive Phase I

ATLAS: IBL Layout and New Beam Pipe

Several layouts under study: 14 staves at R_{min}=~3.1 cm

• Single and double staves – One or two (redundant) cooling channels

Requirements for Sensors/Electronics (G. Darbo) Requirements for IBL

- ▶ IBL design Peak Luminosity = 3×10^{34} cm⁻²s⁻¹ → New FE-I4, higher hit rate
- Integrated Luminosity seen by IBL = 550 fb⁻¹
- Total NIEL dose = 2.4 x $10^{15} \pm 30\% (\sigma_{pp}) \pm 50\%$ (damage factor) = 4.7 x $10^{15} n_{eq}/cm^2 \rightarrow more rad-hard sensors$
- Total radiation dose > 200 Mrad
- ATLAS Pixel Sensor/FE-I3 designed for 10¹⁵ n_{eq}/cm² / 50 Mrad

Ref. Ian Dawson – ATLAS Upgrade Week (Feb.09)

• Fit made for 2 < r < 20 cm for L=1000fb⁻¹

$$\Phi(r) = \left(\frac{493}{r^2} + \frac{25}{r}\right) \times 10^{14}$$

- Gives for IBL @ 3.7 cm (550 fb⁻¹): $\sqrt{1 \text{MeV}}=2.4 \times 10^{15} (1.2 \text{ MGy})$
- Safety factors not included in the computation (pp event generator: 30%, damage factor for 1 MeV fluences: 50%)

Sensor: 3D, Planar, Diamond (G. Darbo)

- IBL sensor developments coming from ATLAS R&D efforts IBL define specification and requirements for the sensors:
 - ATLAS 3D Sensor Collaboration (16 Institutes and 4 processing facilities):

Bergen, Bonn, CERN, Cosenza, Freiburg, Genova, Glasgow, Hawaii, LBNL, Manchester, New Mexico, Oslo, Prague, SLAC, Stony Brook, Udine - Processing Facilities: CNM Barcelona, FBK-IRST (Trento), SINTEF/Stanford

ATLAS Planar Pixel Sensor R&D Collaboration (16 Institutes)

Bonn, Berlin, DESY, Dortmund, MPP & HLL Munich, Udine, KEK, CNM Barcelona, Liverpool, LBNL, LPNHE, New Mexico, Orsay, Prague, Santa Cruz.

ATLAS Diamond R&D Collaboration (6 Institutes, 2 vendors):

Bonn, Carleton, CERN, Ljubljana, Ohio State, Toronto

Bring the 3 sensor technologies to the prototype phase for IBL

Fast insertion of CMS Pixel system

Insertion of the Pixel was done in a few hours

J. Nash - SLHC 20 October 2009

Limitations in Phase 1 Radiation damage due to integrated luminosity.

> Sensors designed to survive $6 \times 10^{14} n_{eq}^{2}/cm^{2}$ (~ 300 fb⁻¹).

n-on-n sensors degrade gradually at large fluences

CMS BPIX Upgrade Phase 1 (2013) → 1216 modules (1.6 x present BPIX)

Inertion of BPIX – Supplytube System with new CO2 Cooling

New axis of rotation (~3 degrees) during pixel insertion

Carbon fiber hinge

Stainless steel tubes diameter = 1.8mm wall thickness = 100µm

- Each half shell has 10 cooling loops
- Each supply tube feeds 5 cooling loops
- Angle bend (~3⁰) during insertion taken by carbon fibre hinge

LHCC Sep 2009

J. Nash - CMS Upgrades

Key issues for tracker upgrades (Not just more channels!)

- Power
 - How to get current needed to the electronics
 - More complicated front ends, more channels may want more power
 - DC-DC converters, Serial powering
- Material Budget
 - Can we build a better/lighter trackers?

From CMS Physics TDR Vol 1 (LHCC 2006-001)

J. Nash - SLHC 20 October 2009

ATLAS ID layout for simulation and engineering

Full semiconductors solution : strips (~160m²) and pixels, organized in staves ! Patter recognition efficiency being optimized (14 hits system)!

 More granularity for similar occupancy at higher luminosity

 The crucial point is to reduce as much as possible the material budget

Choice of the sensor technology still in the R&D phase

Diamond : low leakage, radiation hard, low capacitance, heat spreader ... but lower signal ... and difficult to mass produce

While in the strips region, the existing Si planar technology (n-in-p) will probably be OK from the point of view of radiation (tested $\sim 10^{15}$ n/cm²), the solutions for the innermost layers might need to be different or revisited !

3D silicon : 250 µm have been tested , high eff. ~ 10¹⁶ p,n/cm², S/N ~ 60

M.Nessi - CERN 9/15/09

Reducing tracker mass

- Look at how the trackers are powered
 - Copper is a lot of the material
 - Deliver power at a higher voltage
 - Local voltage reduction
 - DC-DC Conversion
 - Serial Powering
- High speed data links reduce power for more channels
 - Common R/D project versatile link
- C0₂ cooling

DC-DC Conversion for the Tracker Upgrade

A novel powering scheme will be needed \Rightarrow review process to narrow down options.

The CMS tracker has chosen **DC-DC conversion as baseline solution**, and maintains Serial Powering as back-up. Reverting to back-up must remain possible.

 V_{in} (e.g. 10V) Cable loss red. by $1/r^2$

DC-DC Converter Conversion ratio r = 2 - 10 $r = V_{in}/V_{out} = I_{out}/I_{in}$

"Buck converter": few components, efficiency ~ 80%, high currents, high r

Katja Klein

DC-DC Conversion for CMS Tracker Upgrade

Silicon Strip Module Noise

- Raw noise: RMS of fluctuation around pedestal value
- Edge channels are particularly sensitive (explanation in back-up slides)
- Large increase with previous generation of boards (AC1), in particular on edge strips; both conductive (ripple) and radiative (inductor) contributions (TWEPP08)

Tracking with 500 min Bias events

J. Nash - SLHC 20 October 2009

Concepts:Tracking Trigger

Geometrical p_T-cut - J. Jones, A. Rose, C. Foudas LECC 2005

- Why not use the inner tracking devices in the trigger?
 - Number of hits in tracking devices on each trigger is enormous
 - Impossible to get all the data out in order to form a trigger
 - How to correlate information internally in order to form segments?
- Topic requiring substantial R&D
 - "Stacked" layers which can measure p_T of track segments locally
 - Two layers about I mm apart that could communicate
 - Cluster width may also be a handle

20 October 2009

Stacked layers

- At fixed detector pitch sensor separation determine the effective p_r cut
- Increasing separation \rightarrow
 - higher p_t selection
 - broader transition region
 - Reduced high p_t efficiency (more combinatorial)

with smearing

32

Efficiency 0.8 1mm sensor separation 0.6 2mm sensor separation 3mm sensor separation 0.4 4mm sensor separation e.g., 2mm separation 0.2 rejects almost 100% below p_t=3GeV/c Performance of a stacked layer 10 25 at R = 25cm 10,000 di-muon events p_ [GeV/c] M. Pesaresi C. Civinini - INFN Firenze **EPS-HEP** 18/07/2009 2009 Kraków

Module schematic

Double bump assembly

- Such techniques are becoming available
 - eg for high density non-volatile memories and telecom applications TFEA

Building a Trigger module with 3D

Readout IC wafer with TSV from foundry

Oxide bond diced ROIC to sensor Wafer.

Thin to expose TSV

Contact lithography provides Access to topside pads for vertical data path

Final Reticule

Notice Symmetry about vertical center line

R. Lipton Oct 2, 2009

CMS Hadron Calorimetry - SiPMs

- Array of avalanche photo diodes ("digital" photon detection)
 - Array can be 0.5×0.5 up to 5.0×5.0 mm²
 - Pixel size can be 10 up to 100μ
- All APDs connect to a single output
 - Signal = sum of all cells
- Advantages over HPDs:
 - ▶ 28% QE (x2 higher) and 10⁶ gain (x500 higher)
 - More light (40 pe/GeV), less photostatistics broadening
 - Very high gain can be used to give timing shaping/filtering

SiPM

ATLAS Lar Calorimeters (forward) will need a major rework

Studies and tests under way; if these show that action is needed, two solutions are considered:

- Warm calorimeter in front of current calorimeter (diamond technology?)

-Open cryostat, insert complete new FCAL with smaller gaps and more cooling power

All this will require a major shutdown of about 15 months to operate in the experimental cavern

ATLAS Muons

Small-tube MDTs

Smaller tubes provide reduced channel cross section (x 1/2) (reduced occupancy) shorter pulse, shorter maximum charge collection time (x 1/3), reduced space charge (~ $R^{-3} = 1/8$) (affecting chamber resolution at large r)

18 July 2009 S. Palestini 16 J. Nash - SLHC 20 October 2009

Conclusions

- Increasing the luminosity of the LHC will provide a series of difficult R/D challenges to the LHC collaborations
- The communities are actively pursuing the key R/D
 - Maturity varies from nearly complete designs for phase I detector upgrades to very early concept development for phase 2 detectors
- Some of the problems are still not obvious how to solve
 - New technologies/techniques need to be developed.