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Main to Drive Beam Tolerance

• Integrated simulations have been performed
with PLACET and GUINEA-PIG of main linac,
BDS and beam-beam

- system is assumed to be perfectly aligned
(to determine BDS bandwidth effect)

- assuming target emittance at BDS

• Resulting luminosity loss is about 2% for
σG

G
≈ 1 × 10−3

and
σφ ≈ 0.3◦
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• Main beam current needs to be stable to ≈ 0.1–
0.2%
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Emittance Growth

• To evaluate impact of RF error in misaligned
machine assumed machine after ten days of
ground motion and one-to-one alignment

⇒ emittance is close to nominal

⇒ pessimistic, no disperison optimisation

- only main linac emittance growth is consid-
ered

• ∆εy = 0.8 nm corresponds to 2% luminosity
loss

⇒ Resulting luminosity from emittance growth is
comparable to the one caused by limited BDS
bandwidth
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Impact of Bunch Compressor

• The drive beam needs to be compressed longi-
tudinally

⇒ energy errors will translate into phase errors

δz = R56∆E/E

• For fully loaded operation

δE

E0
=

2δG

G0
− δN

N0

⇒ Can attempt to avoid compression
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Example Tolerances, Full Compression at Final Turn-Around

• White noise type pulse-to-pulse jitter assumed

• Total compression after drive beam accelerator

- energy chirp of 0.6% per σz = 3 mm requires R56 ≈ 0.5 m

⇒ relative energy error tolerance is 3 × 10−5

⇒ relative gradient tolerance is 1.5 × 10−5

⇒ relative charge tolerance is 3 × 10−5

⇒ phase tolerance is 0.02◦ at 1 GHz

• Looks very tough

⇒ try to find ways to relax the tolerances
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Drive Beam Compression and Phase Stabilisation Concept
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Feedforward at Final Turn-Around

• Final feedforward shown

- ultima ratio

- measure phase

- adjust BC chicane with
kicker to compensate error

• Requires

- timing reference (FP6)

- phase measure-
ment/prediction (FP7)

- tuning chicane (FP6,
Frank S.)

• Missing will be kicker and am-
plifier

- but collaboration with Ox-
ford envisaged
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Capture Range of Feedforward

• We have modified our previous
design

• Longitudinal shifts change fi-
nal bunch length

• We require that RF amplitude
error caused by longitudinal
shift is below 0.1%

• R56 ≈ 0.2 m

• System with 16 1 m long kick-
ers would need up to ≈ 1 MW
power during kick

- less than 1 m3 for power
supplies (FONT-type)
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Tolerances before Feedforward

• Can cure phase error

- could also cure intensity error if we rely on off-crest running

• Want to capture 3–4 times RMS tolerance before feedforward

- assume gain factor of 10

• Assume feedforward capture range is 10◦ (∆z = 0.7 mm)

- lattice is OK but kicker needs to be evaluated

⇒ can allow 2.5◦ RMS jitter before feedback (4σ capture)

- assume gain factor of 10

⇒ 0.25◦ RMS jitter after feedforward

• Beam stability in current decelerator design requires less than 1% overcurrent

⇒ require 0.1% RMS fluctuation per 10/2 bunches (one PETS fill time), or reoptimise
decelerator

- current stability from preliminary CTF3 measurement is 0.1%

- static variations still need to be cured
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Baseline Bunch Compressor System

• Early compression in drive beam accelerator (3 mm → 1 mm)

⇒ can use relatively large energy spread ⇒ small R56 ⇒ large energy error tolerance

• Uncomression at end (1 mm → 2 mm)

- to limit coherent snychrotron radiation in delay loop and combiner rings

• Recompression after rings (2 mm → 1 mm)

• Measure real phase at final phase feedforward

• Uncompress in turn-around

• Recompress before decelerator

- used as correction chicane with small additional kicks

• To first order only RF errors at first compression are important

• assume (maybe optimistic) chirp of 2–3% per σz

⇒ R56 = 67–120 mm

⇒ relative energy tolerance 1–2 × 10−3 ⇒ relative gradient tolerance is 0.5–1 × 10−3 ⇒
relative charge tolerance is 1–2 × 10−3

⇒ phase tolerance is ≈ 0.2◦ at 1 GHz
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Current Measurement in CTF3

0 100 200 300 400 500
0.990

0.995

1.000

1.005

1.010

Beam pulse ! !""

No
rm

al
ize

d
Ia

tB
PM

15
90
!""

standard deviation # 1.5 10"3

0 20 40 60 80
Occurences !""

• No dedicated stabilisation effort in CTF3

⇒ Current stability is close to needs for CLIC

• Dynamic charge variation from one pulse slcie
to the next seems better than BPM resolution
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Improvement with Simulated Feedback

• Assume a pulse to pulse feed-
back on the current and use
measured data

⇒ current stability would im-
prove to 0.06%
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Phase and Power Measurement in CTF3

• Measurements of phase and power of CTF3
klystron indicate

- phase stability of 0.2◦

- power stability of < 0.2%

⇒ gradient stability ≤ 0.1%

⇒ Corresponds to drive beam needs

• Improvements appear possible
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Filtering and Intra-Pulse Feedback

• Long drive beam pulse at generation ≈ 140 µs

• End of pulse catches up with beginning due to combiner rings

• Also design of sequence of acceleration and bunch compression for drive beam can help to
achieve required performance

- but still need to beam able to measure final jitter
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Drive Beam Turn-Around Jitter Tolerance

• Obviously magnet jitter tolerance should be relaxed if all magnets are on one power supply

- isochronos arc

• Detailed study finds for 10−4 relative strength jitter

- independent jitter of all magnet power supplies: RMS of 14 µm

- all magnets jitter coherently: RMS of 20 nm

- quadrupoles and dipoles each jitter coherently: RMS of 13 nm

⇒ For reasonable cabling the tolerances are relaxed
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Transverse Drive Beam Jitter
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• Longitidinal motion due to transverse angles

• Assumed that systematic effect is tuned out

⇒ Only jitter component left

• Decelerator is most important (largest phase advance)

• Need to average over local phase error to obtain effective phase error
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Main Beam to Main Beam Phase Tolerance

• RMS collision timing shift

1% loss per beam for
21 µm
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Main Beam Phasing

• In central complex external timing reference assumed

• Along the main linac

- distributed timing system

- use of main beam as timing reference
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Main Beam Phasing

• Measure phase and energy error in damping ring and correct with BC1 at extraction

- needs to be worked out

- energy and phase stabilisation in damping ring needs to be studied

• Before beams are sent to main linacs could measure and correct phase

- no design exists for now, exploration required
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Resulting IP Beam-Beam Phase Error

• If the main beam serves as a timing reference we find

- Beam-beam phase jitter at the interaction point

σBB ≈
√

2



6

7
σMB→RF ⊕ σMB





σMB: Timing error of outgoing main beam

σMB→RF : Error of picking up phase of outgoing main beam and turning this into BC2
RF phase

Note: the factor 6/7 is due to the second bunch compressor

⇒ Relative rhase error of the two outgoing main beams needs to be ≤ 21 µm

• If we use the X-FEL system as timing reference we find

σBB ≈
√

2



1

7
σMB ⊕ 6

7
[σref ⊕ σref→RF ]





σref : Timing error of reference timing at final turn-around with respect to central clock

σref→RF : Error of picking up phase of external reference and turning this into BC2 RF
phase

⇒ Relative rhase error of the references at final turn-around needs to be ≤ 21 µm

• Energy error also leads to main beam phase jitter

19



Beam Waist Feedforward

• If we measure the relative phase errors of the outgoing main beams we can move the waist
longitudinally with a feedforward

- Could have fast quadrupoles

- Kick beams in sextupoles

- Could accelerate/decelerate beam just before the final doublet, where the chromaticity is
uncorrected

• Details need to be worked out
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RTML Tolerance

• Gradient error in booster linac (without energy feedforward): 4 × 10−4

- could be relaxed to 1 × 10−3 but large beam energy jitter at main linac

• Phase error of first bunch compressor (BC1) at 4 GHz:

- 0.04◦ for main beam as timing reference

- 0.26◦ for X-FEL scheme

• Coupling of RF for both main beams would help

- but currently different time slices are used

• Phase errors from the damping rings can be cured in BC1

• Relative phase of electron and positron beam can be measured after booster linac

- feedback for phase tuning appears possible

- feedforward is not obvious before BC2

- could correct at BC2 and ship phase error signal to all turn-arounds

• Better solution may be to measure beam energy and phase before BC1 and correct with
feeforward
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Main to Drive Beam Phase Errors

• If the main beam serves as a timing reference we find

- Main beam vs. drive beam phase jitter in main linac

σMD ≈ (σMB→RF ⊕ 0 × σMB) ⊕ (σMB→ref ⊕ σDB→corr ⊕ aσDB)

• If we use the X-FEL system as timing reference we find

- Main beam vs. drive beam phase jitter in main linac

σMD ≈



1

7
σMB ⊕ 6

7
[σref ⊕ σref→RF ]



 ⊕ (σref ⊕ σDB→corr ⊕ aσDB)

or roughly

σMD ≈ σref→RF ⊕
√

2σref ⊕ σDB→corr ⊕ aσDB ⊕ 1

7
σMB
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Feedback and Tuning Strategy

• Feedback to deal with slow variations

• Tuning to deal with static or slow imperfections

• Need a path length tuning system for each turn-around

- in drive beam and main beam

• Need an adjustment of path length from one drive beam turn-around to the next

• Similarly for the combiner rings, the delay loop and the drive beam accelerator complex

⇒ Slow drifts of relative phasing of the beams do not appear to be an feasibility issue
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Feedforward and Feedback Layout
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Some Open Issues

• Performance of hardware, in particular distributed timing

• Drive beam source design

- and stability

• Damping ring phase, energy and charge stability

- phase could be cured in BC1

- tight requirements for sources, waiting for feedback from working group

• Relative phasing of the drive beam to the RF is an issue

- stabilised by stabilising temperature etc.

- e.g. RF network requires 0.2 K stability (Walter, Module WG)

- other options exist, e.g. measuring the phases
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Further Work

• Integration of injectors and damping rings

- for the injectors already bunch-to-bunch charge variation of 1% is required (0.1% for main
linac accelerating structure fill time

• Study of BDS improvements, in particular the waist shift options

• Exploration of other potential phase stability issues

• Tracking of bunches through relevant systems to verify performance

• Simplified model of error propagation to achieve specifications

- correlations between errors

• Slow feedback estimates
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Conclusion

• We have two options to provided a distributed phase reference system in the main linac

- use the outgoing main beam

- X-FEL-like system

- or a combination

• Decision needs to be based on further input from hardware performance

• We seem to have a concept for drive beam generation and transport complex that leads to
acceptable tolerances

- demonstration of hardware

⇒ close to becoming a performance and cost issue

- ready for improvements (cost, performance)

- e.g. one central feedforward

• The effective loop and transfer line lengths are measured and can be corrected with feedback

• We need to look again into effects within the drive beam accelerator pulse

• The missing systems need to be studied

- and detailed layouts for the conceptual systems

• Should review module phase stability strategy
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Reserve
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Single Stage Bunch Compressor Option

• Total compression after drive beam accelerator or just before decelerator

- not clear that this yields a small enough energy spread

• Energy chirp is limited to at most 0.5–0.6% per σz = 3 mm

- Due to combiner rings and turn-around loops

• Required R56 can be estimated (excluding overcompression) as

σz,0 − σz,1

∆E(σz)/E
≤ R56 ≤

σz,0

∆E(σz)/E

• For the given energy spread and initial bunch length and the final target of σz,1 = 1 mm we
find

⇒ Requires R56 = 333–600 mm

⇒ relative energy error tolerance is 2–4 × 10−4 ⇒ relative gradient tolerance is 1–2 × 10−4

⇒ relative charge tolerance is 2–4 × 10−4

⇒ phase tolerance is ≈ 0.2◦ at 1 GHz
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