End Station Test Beam (ESTB) at SLAC

John Jaros

LCWS2010 Beijing March 29, 2010

End Station Test Beam (ESTB) Will Restore Test Beams at SLAC

- * There is a Long History of Linear Collider studies at ESA and FFTB
 - Final Focus feedback studies
 - Beam Energy Spectrometers
 - MDI, Collimator Wakefields, Beam Pickup
- * Test Beam Activities at SLAC were Interrupted by Installation and Operation of LCLS, SLAC's X-ray Laser.
- * ESTB Stage I provides High Energy e+e- Beams (Under Construction)
 - World's only high-energy primary electron beam for large scale Linear Collider MDI and beam instrumentation studies
 - Exceptionally clean and well-defined secondary electron beams with known timing, for detector development and calibration for LC, SLHC, Super B, and Particle Astro experiments
- * ESTB Stage II provides hadron beams (Proposal Pending)

ESTB Proposal Approved

STB: A proposal to Provide Test Beam to SLAC's End Station A

ESTB End Station Test Beam

A Proposal to Provide Test Beams in SLAC's End Station A

R. Erickson, T. Fieguth, C. Hast, J. Jaros, D. MacFarlane, T. Maruyama, Y. Nosochkov, T. Raubenheimer, J. Steppard, D.Walz, and M. Woods

SLAC National Accelerator Laboratory Menlo Park, California

July 31, 2009

July 31, 2009

Proposal submitted last August. Stage I was approved in January and work has begun.

Co-Authors

- R. Erickson, T. Fieguth, C. Hast,
- J. Jaros, D. MacFarlane, T. Maruyama,
- Y. Nosochkov, J. Sheppard,
- T. Raubenheimer, D.Walz, M. Woods

SLAC National Accelerator Laboratory Menlo Park, California

ESA Test Beams Can Provide Electrons/Hadrons up to 13.6 GeV, from single particles to full beam intensity

- •Kick 13.6 GeV LCLS beam to ESA 5 Hz, 2 x 10⁹ e⁻/ pulse primary beam
- •Clean secondary electrons/positrons p<13.6 GeV, 0.1/pulse to 2 x 10⁹ e⁻/pulse
- •Secondary hadrons
 - \sim 1 π / pulse < 12 GeV/c

Secondary Particle Yields

ESTB Motives LC Beam Instrumentation, MDI, Detector R&D

LC Beam Energy Measurement

Calibrate Anita with Full Beam into Ice

Ideal for LC Detector R&D

- LC beam timing—precisely known arrival time
- Ultra-clean, known momentum electrons for FCal studies
- Tagged photon beam possible
- ~12 GeV/c hadrons for tracker, vertex detector studies. Multiple scattering negligible at these momenta.
- Hadrons suitable for Hcal studies at the low and intermediate energies which dominate ILC jets.

ESTB Stage I

- Construct kicker magnets and vacuum chamber for BSY
- Update PPS System and install new beam dump for ESA
- Update MPS and Controls as needed

NATIONAL ACCELERATOR LABORATORY

* Schedule: Construction 2010, Beams by ~Spring 2011.

Use LCLS Kicker Magnets in BSY

Primary Electron Beam Properties

Energy 13.6 GeV

Repetition Rate 5 Hz

0.15 to 0.6 x 10¹⁰ (1 nC) e-Charge per pulse

Momentum spread rms <0.058%

280 μm Bunch length rms

Emittance rms ($\gamma \varepsilon_x \gamma \varepsilon_v$) $(4,1) \times 10^{-6} \text{ m rad}$

 $\sim 10 \ \mu m$ Spot size at waist $(\sigma_{x,y})$

Momentum dispersion

η and η' <10mm

Drift space available

for experimental apparatus 60 m

Transverse space available

5 x 5 m for experimental apparatus

Lots of room for apparatus

ESA Experimental Area

ESA Infrastructure

Available Instrumentation

Trigger counters; Halo veto counters; High resolution beam hodoscope; Particle ID (Cerenkov, TOF, shower counter); Small, high field solenoid; sturdy support table with remote movers

Cranes

15 and 50-ton cranes available

Secondary Electrons and Positrons

* Inserting a thin foil in the transport line to ESA, and using the beamline as a spectrometer, creates a clean secondary electron/positron beam over the full range of energies (<13.6 GeV/c) and a wide range of intensities down to ~1/pulse.

Production Rate from Foil

Attenuate up to Factor 10⁶

Secondary Electron Beam Properties

 $\sigma_{x,v}$ ~ 1 mm

 $\Delta p/p \sim \pm 1\%$

Photon Beam Possible

Clean electrons plus tagging system provides photon beam capability

ESTB Stage II Hadron Production

Add Be target, beam dump, analyzing magnet, momentum slit, and quadrupole doublets to produce a secondary hadron beam in ESA. Production angle = 1.5° and Acceptance = $10 \, \mu sr$

ESTB Stage II Hadron Production

Secondary Hadron Beam Properties

Energy

Particles per pulse

Bunch repetition rate

Precise beam trigger

rms x, y spot size

Momentum analysis

X,y,z space available

Rate for p, K, µ

0.1-12 GeV

 $0.1-10 \pi / nC$

5 Hz

Yes

1-2 mm

 $\Delta p/p \sim 1\%$

5 m, 5 m, 15 m

 $0.1-0.01/\pi$

Beam Properties at Detector Plane

SLAC Test Beam Conclusions

- * SLAC is restoring test beam capability to ESA, making use of pulses borrowed from LCLS.
- * ESTB's high energy primary electron beam will allow unique studies of LC beam instrumentation and MDI.
- * An extremely clean electron/positron beam can be delivered over all the available energies (<13.6 GeV) and a very wide range of intensities, suitable for detector R&D.
- * A hadron beam is planned for the future, with energies up to 12 GeV, suitable for tracker, vertex detector, and calorimeter R&D.
- Electron beams should be available by Spring, 2011.

