Asian Test Beam Facilities

Satoru Uozumi (satoru@knu.ac.kr) Kyungpook National University Mar-29th 2010 LCWS10@IHEP Beijing

Japan

- J-Parc test beam facility
- Tohoku Univ. LNS
- KEK Fuji Test Beamline (0.4-3.4 GeV e⁻) (shutdown at least until 2012, future plan not clear)
- KEK ATF/ATF2 (0.4-1.4 GeV e⁻) (dedicated for beam study, difficult for testbeam use)

China

IHEP Beijing TBF

Russia

IHEP Protovino

KEK J-PARC test beam facility

Available beams at K1.1: pions, protons of

Two areas being prepared:

- K1.8 ... expected to be the main testbeam facility.
- K1.1 ... Tentative facility until K1.8 is ready

J-PARC TB facility status & plans

K 1.8 ... Designed as the main testbeam facility, but will not work
with low intensity beam from the main ring.
(Need I_{MR}=100kW, but will be just I_{MR}=5kW in initial stage.)

K 1.1 ... located in future fixed target experiment.
 tentative option for start-up phase, it works even at I_{MR}=1kW.
 Expected to be available for users during Oct-Dec 2010.

Facilities for users are also under preparation.

Tohoku Univ. Lab. Of Nucl. Sci. (LNS)

- Electron- Bremsstrahlung photon facility mainly for hadron physics.
- Tartially positrons up to 950 MeV available for testbeam.
- Positron rate 2~3 kHz
 7-sec on / 7-sec off spill.
- To use the beamline, need to find co-working group in Japan for crelical issues (radiation regulation etc...)
- Can apply the beamtime anytime.

IHEP Beijing Test Beam Facility

- Upgrade of the IHEP beamline is being done at the end of this year.
- e^{\pm} , π^{\pm} , p beam line equipped with Cerenkov detector, silicon tracker and MWPCs.

IHEP Beijing Test Beam Facility

Parameter	Primary Electron Beam		Secondary Beam	
	Before	Upgrade	Before	Upgrade
N _e / Bunch	10^{10}	$10^2 - 10^{10}$	1	1 - 2
Energy (GeV/c)	1.1 – 1.5	1.1 – 1.89	0.4 - 1.2	0.3 – 1.2
Energy Spread	< 1%	< 1%	1%	0.5%
Kinds of Particle	e ^{+/-}	e ^{+/-}	e ^{+/-} , π ^{+/-} , P	e ^{+/-} , π ^{+/-} , P
Bunch Width(ns)	1.2	1.2, 0.02		
Bunch Rate (Hz)	25-50	25-50	1.5-2(Single); 7-8 (Mixed Multi- particles)	1 -2(Single); ~1 (two particles)

2008.07-2010. 12 Shut down for the upgrade and has a short-term running of E2 line; 2011.01 Commission

Protovino in IHEP Russia

- 70 GeV accelerator complex for protons
- Works two times per year,
 - March-April
 - Nov-Dec
- For each run 1 month for physics
- cycle time 10 s
- spill time 1.8 s
- intensity ~ 1.10¹³ p/cycle
- Several beam lines available

Beam monitoring system on N2B line

- S_1 - S_4 , A_1 , A_2 scintillation counters
- PC₁, PC₂ proportional chambers
- H₁, H₂ scintillation hodoscopes
- C₁, C₂ threshold cherenkov counters
- D_1 , D_2 differential cherenkov counters
- S_{TOF} time-of-flight scintillation counter

Protovino in IHEP Russia

Beam line N 2B

Electron beam

Content **Intensity** Energy, GeV in spill $e, \% | \mu, \% | h, \%$ on 10¹² pot $4 \cdot 10^2$ 1 **82** 10 1.10^3 77 **15** 2.10^{3} **50 32** 18 5.10^{3} 10 **34 35 30** 4.10^4 77 9 27 **13**

 2.10^4

Hadron beam

Energy, GeV	Intensity in spill on 10^{12} pot	
33	1.10^{6}	
40	3·10 ⁶	
55	2·10 ⁵	

Beam line

45

N 22

• Proton beam: up to 70 GeV/c, $I = 10^6 - 10^{10}$ pps

4

- Secondary hadron beam
- negative: 7 60 GeV/c, I < 6.108 pps

91

- positive: 7 60 GeV/c, I < 10¹⁰ pps
- electron/positron beam: 7 40 GeV/c , I < 5·10⁵ pps

Summary

Working (or will be working) beamlines in Asia and Russia:

- J-PARC ... 0.5-1.1 GeV π, p beams with rate ~ 10⁷ per spill.
 K1.1 line will be available since ~ Oct 2010.
 K1.8 will be set up in future, it will provide beams in wider energy range.
- **Tohoku LNS** ... 0.1-0.95 GeV *e*⁺ with rate ~kHz available Small facility, may be difficult to support international team.
- IHEP Beijing ... e^{\pm} (1.1-1.9 GeV) and π^{\pm}/p (0.3-1.2 GeV) beams Upgrade will be finished in this year.
- **Protovino Russia** ... *e*⁻(1-45 GeV), *h*[±](1-60 GeV), μ⁻(1-55 GeV) Available ~2 months / year (April, Nov-Dec)

Backups

Silicon Sensor Telescope for Beijing TBF

Provided by Xiao CAI (IHEP) & Marcel Demarteau (FNAL)

"3+2" Structure

- Station1: 3 planes
 - No ghost (fake point)
- Station2: 2 planes
 - Using a small angle between planes

Objective:

- Providing Tracking
- Distinguishing DoubleParticles Event

Readout (CAPTAN)

IHEP accelerator

70 GeV accelerator complex for protons =

Linac - URAL-30, 30MeV

Booster – 1.5 GeV

+

Main ring – 70 GeV proton synchrotron

Works two times per year

March-April

Nov-Dec

For each run 1 month for physics

IHEP accelerator parameters

- cycle time 10 s
- spill time 1.8 s
- -intensity ~ 1·10¹³ p/cycle
- -number of bunches 30
- RF structure: bunch length 40 ns, bunch spacing - 160 ns
- beams are from extracted protons and internal targets

Beams

In the 1BV exp hall are from internal targets with limited intensity (<10**7 part/spill):

- -negative hadrons up to 55 GeV
- -positive hadrons up to 20 GeV
- -photons, electrons up to 30 GeV
- -70 GeV protons from crystals

In the exp gallery are from extracted protons, have high intensity:

- -protons
- -intensive secondary hadrons
- -neutrino