Higgs Recoil Mass Study for ILD LOI and Beyond

Hengne LI

Hengne.Li@in2p3.fr

LAL/Orsay, 91898 Orsay Cedex, France

LPSC/Grenoble, 38026 Grenoble Cedex, France

Outline

- (A) Full Simulation Study: Ecm=250GeV, RDR250 Beam Parameters
 - Production

Results for ILD LOI

- Background Suppression
- Fit to Extract the Results
- Bremsstrahlung Recovery (for the e-channel)
- Discussions
- (B) Fast Simulation Study: SB2009 Beam parameters
 - Fast Simulation
 - Results
 - Discussions
- (C) Summary

- Dedicated Study for SB2009 Discussion,
- the impact on the Higgs recoil mass measurement

Outline

- (A) Full Simulation Study: Ecm=250GeV, RDR250 Beam Parameters Results for ILD LOI
 - Production
 - Background Suppression
 - Fit to Extract the Results
 - Bremsstrahlung Recovery (for the e-channel)
 - Discussions
- - Fast Simulation
 - Results
 - Discussions

- Dedicated Study for SB2009 Discussion,
- the impact on the Higgs recoil mass measurement

MC Production

- Higgs-Strahlung Process:

- Higgs Recoil Mass:

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

- Cross Section and Coupling Strength Measurement:

$$g^2 \propto \sigma = N/\mathcal{L}\epsilon$$

Advantages at Linear Collider:

- Using only the Z and Ecm
- Independent of the Higgs decay

Cross-Section

- Full Simulation of the ILD
- $M_{H} = 120 \text{ GeV}$
- Ecm = 250 GeV just above mass threshold
- Beam Parameters: RDR250
- Luminosity: 250 fb⁻¹
- Polarization:

e⁻Re⁺L: (e⁻: +80%, e⁺: -30%)

e-Le+R: (e-: -80%, e+: +30%)

MC Production

Backgrounds Reactions:

Production Statistics:

- 1) Signal: 10 ab-1 each
- 2) Background: mostly larger than 250 fb⁻¹

Lepton Pair:

Background Rejection

Background Suppression in 2 Steps: (Model Independent)

Step One, by cuts: remaining major bkg: ZZ and WW

, etc....

Step Two, by Likelihood: remaining major bkg: ZZ

vars employed=>

Fit: µ-channel, MI Analysis

Fit: e-channel, MI Analysis

Bremsstrahlung Recovery

A dedicated algorithm for inclusion of Bremsstrahlung photons. (Thanks to M. Thomson)

Bremsstrahlung Recovery

Discussion I: Accelerator Impact

- The Higgs Recoil Mass measurement is very sensitive to accelerator effects:
 - Beam Energy Spread: Increases the width of recoil mass peak, thus reduces the accuracy of the measurement.
 - Beamstrahlung: Largely reduces the effective statistics on the recoil mass peak

Discussion II: Systematic Errors

On the Higgs recoil mass measurement

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

- Reference reaction ZZ can be used
- Z invariant mass: control the tracking momentum
- Z recoil mass: control the center of mass energy and radiative effects
- On the cross-section measurement

$$g^2 \propto \sigma = N/\mathcal{L}\epsilon$$

- ☐ Efficiency is the main source, uncertainty due to background suppression
- ☐ By simplifying the background suppression, i.e. only several common cuts:
- \Box δσ_{stat.} increases by ~10%, But, largely reduces the uncertainty of efficiency.

12

Discussion III: Angular Analysis

We can determine the Higgs Spin Parity from angular analysis:

Definition:

 θ : ZH production angle φ*: Z decay azimuthal angle in the Z rest frame

But, in the background suppression we employed many angular cuts!

, etc....

This means we have to re-design our background suppression in order to perform this analysis: working in progress...

13

Outline

- - Production
 - Background Suppression
 - Fit to Extract the Results
 - Bremsstrahlung Recovery (for the e-channel)
 - Discussions
- (B) Fast Simulation Study: SB2009 Beam parameters
 - Fast Simulation
 - Results
 - Discussions

(I will present the details in the morning

Dedicated Study for SB2009 Discussion,

Results for ILD LOI

- the impact on the Higgs of Mar. 28 on "GDE :Beam Delivery System") recoil mass measurement

Fast Simulation

- ☐ A dedicated Fast Simulation Algorithm is developed for the ILD concept
- Parameterize the Momentum Resolution as a function of P and cosθ
- ☐ The MC true momentum of a given muon is smeared according to this parameterization.

$$\frac{\Delta P}{P^2} = \begin{cases} a_1 \oplus b_1/P & : |\cos \theta| < 0.78\\ (a_2 \oplus b_2/P) / \sin(1 - |\cos \theta|) & : |\cos \theta| > 0.78 \end{cases}$$

Results

Only muon-channel, Beam Pol. (e-: -80%, e+: +30%)

Beam Par	$\mathcal{L}_{\mathrm{int}}$ (fb ⁻¹)	ϵ	S/B	$M_H \; ({ m GeV})$	σ (fb) $(\delta\sigma/\sigma)$
RDR 250	188	55%	62%	120.001 ± 0.043	$11.63 \pm 0.45 \ (3.9\%)$
RDR 350	300	51%	92%	120.010 ± 0.084	$7.13 \pm 0.28 \; (4.0\%)$
SB2009 w/o TF 250b	55	55%	62%	120.001 ± 0.079	$11.63 \pm 0.83 \ (7.2\%)$
SB2009 w/o TF 350	175	51%	92%	120.010 ± 0.110	$7.13 \pm 0.37 \; (5.2\%)$
SB2009 TF 250b	68	55%	62%	120.001 ± 0.071	$11.63 \pm 0.75 \ (6.4\%)$
SB2009 TF 350	250	51%	92%	120.010 ± 0.092	$7.13 \pm 0.31 \; (4.3\%)$

☐ Discussions:

- □ Luminosity of SB2009 is worse than RDR: Given Ecm, SB2009 gives worse results than RDR
- ☐ TF (Travel Focus) indeed gives better results than w/o TF, due to higher luminosity.

16

- ☐ S/B higher at 350 GeV than 250GeV: due to better bkg suppression
- ☐ At 350 GeV, detector effect is dominant, while at 250 GeV accelerator effects are dominant

Discussions

Comparison of Higgs Recoil Mass distributions with different beam parameters:

Discussions

Comparison of Higgs Recoil Mass distributions with different beam parameters:

Why Better BKG suppression at 350GeV?

Discussion: Accelerator Impact

☐ For a given luminosity, Comparison Before and After Detector Simulation.

Major contribution to the width of peak:

- Ecm=250GeV
 Accelerator effects
- Ecm=350GeV

 Detector effects

Because:

- beam energy spread : same at 250 and 350 GeV
- lepton momentum is higher at 350GeV, and ΔP~P²

Summary

- ☐ Full Simulation Study for ILD LOI:
 - Background rejection: near total suppression of WW and lepton pair
 - ☐ Combined Results (e and mu channel) Achieved:
 - \square $\delta M_H=33MeV$, $\delta \sigma/\sigma=2.5\%$
 - Accelerator Effects are dominant at Ecm=250GeV
 - ☐ Systematic Error is waiting for study
 - ☐ Higgs spin parity should be able to be measured by angular analysis
- ☐ Fast Simulation Study for SB2009:
 - ☐ Worse results from SB2009 due to smaller luminosity
 - ☐ TF gives better results than w/o TF
 - □ at Ecm=350GeV, background suppression can be more efficient
 - □ at Ecm=350GeV, given the luminosity, detector effect is dominant

Thanks to All of You!

Beam Simulation

Using GUINEA-PIG with SB2009 Beam parameters given by Brian Foster's talk on SB2009 Meeting at DESY 2009

23

Estimation of the Integrated Luminosity

☐ Estimate the Integrated Luminosity for various sets of beam parameters according to Peak Luminosities: taken RDR 500 as reference

$$\mathcal{L}_{int} = \frac{\mathcal{L}_{peak}}{\mathcal{L}_{peak,RDR500}} \cdot \mathcal{L}_{int,RDR500}$$

☐ Resulting numbers:

		RDR		S	B2009 w	o TF		S	3B2009 w	7/ TF	
$\sqrt{s} \; (\text{GeV})$	250	350	500	250.a	250.b	350	500	250.a	250.b	350	500
Peak L $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	0.75	1.2	2.0	0.2	0.22	0.7	1.5	0.25	0.27	1.0	2.0
Integrated L (fb ^{-1})	188	300	500	50	55	175	375	63	68	250	500

The major difference between RDR and SB2009 is the Luminosity!

Analysis

- ☐ Event generation using PYTHIA:
 - ☐ Beam Pol. (e-: -80%, e+: +30%) at Ecm=350GeV
 - □ taken only muon-channel, and bkg only ZZ and WW
- Same analysis procedure as for the LOI.
- □ Numbers of signal and bkgs: Ecm=350GeV, SB2009 w/o TF 350

Reactions	$ZH \to \mu\mu X$	ZZ	\overline{WW}
$\overline{N_{initial}}$	1248	29k	61k
$N_{selected}$	633	658	30

Analysis

Background Rejection I: By Cuts

Cut-Chain: Model Independent

- (1) $P_{Tdl} > 20 \text{ GeV}$
- (2) $M_{dl} \in (80, 100) \text{ GeV}$
- (3) $acop \in (0.2, 3.0)$
- (4) $\Delta P_{Tbal.} > 10 \text{ GeV}$
- (5) $|\Delta \theta_{2tk}| > 0.01$
- (6) $lcos\theta_{missing}l < 0.99$
- (7) $M_{recoil} \in (115, 150) \text{ GeV}$

Background Rejection I: By Cuts

Cut-Chain: Model Independent

- (1) $P_{Tdl} > 20 \text{ GeV}$
- (2) $M_{dl} \in (80, 100) \text{ GeV}$
- (3) $acop \in (0.2, 3.0)$
- (4) P_{Tbal.} >10 GeV
- (5) $|\Delta \theta_{2tk}| > 0.01$
- (6) $lcos\theta_{missing}I < 0.99$
- (7) $M_{recoil} \in (115, 150) \text{ GeV}$

Background Rejection I: By Cuts

ΔP_{Tbal.} to reject lepton pair background:

P_{Tdl} balance P_{Ty}?

Define $\Delta P_{Tbal.} = P_{Tdl} - P_{Ty}$

- Reduces lepton pair background almost totally.
- Signal loss: ~1%

Background Rejection II: By Likelihood

After cuts rejection, major background remained is the ZZ/WW production, Further rejection using Likelihood Method is applied

Likelihood:

Probability

i th Variable

Likelihood Fraction:

$$f_L = L_S/(L_S + L_B)$$
 within (0, 1)

PDFs of the 4 variables employed

Background Rejection II: By Likelihood

Decide the f_L cut by the maximum significance for each particular analysis channel

Pol. e-Le+R, μμX-channel, MI Analysis for illustration

On average, Likelihood further rejection suppresses ZZ background by a factor of 2, and remove nearly all the WW background, with a loss of signal about 10%.

Sources of Bremsstrahlung

Fraction of Brem. Energy Loss

Brem. Vertex

Brem. Mean Energy Loss vs. Brem. Vertex

~4% X₀ Material before TPC!

Lepton ID and Track Selection

1) Cuts for lepton ID:

	μ -Identification	e-Identification
E_{ecal}/E_{total}	< 0.5	> 0.6
E_{total}/P_{track}	< 0.3	> 0.9

Efficiency of lepton pair ID: (pair selection according to Z Mass)

μ-channel (muon ID) : 95.4% e-channel (electron ID) : 98.8%

2) $\Delta P/P^2$ criterion on tracks in the selection of lepton candidates

Parameterize ΔP/P² for central region

$$\Delta P/P^2 = a \oplus b/P;$$

where $a = 2.5 \times 10^{-5}; b = 8 \times 10^{-4}$

• The criterion ΔP/P² applied

$$|cos\theta| < 0.78$$
: $\Delta P/P^2 < 2 \times (2.5 \times 10^{-5} \oplus 8 \times 10^{-4}/P)$
 $|cos\theta| > 0.78$: $\Delta P/P^2 < 5 \times 10^{-4}$

 ΔP is propagated from tracking error matrix Same cuts applied on both μ -channel and e-channel

A Model Dependent Analysis

An Additional Model Dependent Analysis is Performed:

Assume Higgs decay dominantly has two or more charged tracks.

MD Cut-Chain:

- (1) $P_{Tdl} > 10 \text{ GeV}$
- (2) $M_{dl} \in (71, 111) \text{ GeV}$
- (3) $N_{add.TK} > 1$
- (4) $|\Delta\theta_{2tk}| > 0.01$
- (5) $|\Delta\theta_{min}| > 0.01$
- (6) $acop \in (0.2, 3.0)$
- (7) $lcos\theta_{missing}l < 0.99$
- (8) $M_{recoil} \in (115, 150) \text{ GeV}$

Fit: µ-channel, MD Analysis

Fit: e-channel, MD Analysis

Fit Methods

Signal Functions: (three functions are studied, with identical results)

GPET Function: Gaussian core for the Peak with an Exponential complementing the tail, updated from

previous contributions.

Kernel Estimation: An universal method for all kinds of distributions,

Intensively used at LEP for Higgs searches,

Physics Motivated Function: New!

Beamstrahlung (X) ISR (X) Gaussian Higgs Recoil Mass (Yokoya-Chen)

Analytical Numerical Propagate to

With beam parameters given in advance, Can predict the MC distribution

Background: Polynomial Function

Monte-Carlo

Physics Motivated Function

135

M_⊢ (GeV)

0.3

0.2

To be extracted!

$$F_M(x; \mathbf{M}_H, N_S) = N_S \cdot F_S(x; \mathbf{M}_H) + N_B \cdot F_B(x)$$

Kernel Estimation

☐ A sum of Kernels

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h_i} K\left(\frac{x - t_i}{h_i}\right),$$

Physics Motivated Function

$$F_S(x) = f_2(y(x)) \cdot \left| \frac{dy}{dx} \right|$$

where,

$$y(x) = \frac{1}{2s^2} \cdot \left[2s(x^2 - M_H^2) + (s + x^2 - M_Z^2)(s - x^2 + M_Z^2) - (s - x^2 + M_Z^2) \cdot \sqrt{4s(M_H^2 - M_Z^2) + (s - x^2 + M_Z^2)^2} \right],$$

$$\frac{dy}{dx} = \frac{x}{s^2} \cdot \frac{\left[s - x^2 + M_Z^2 + \sqrt{4s(M_H^2 - M_Z^2) + (s - M^2 + M_Z^2)^2}\right]^2}{\sqrt{4s(M_H^2 - M_Z^2) + (s - x^2 + M_Z^2)^2}};$$

and,

$$f_2(y) = \sum_{i=0}^N p(i) \cdot [g_1(y;i) \otimes G(y;0,\sigma)] ,$$

with

$$p(i) = \frac{2^i}{i!} \left(\frac{n_{\gamma}}{2}\right)^i e^{-n_{\gamma}} ,$$

$$g_1(y;i) = \kappa^{\frac{i}{3}} \cdot y^{(\frac{i}{3}+\beta-1)} \cdot \frac{\Gamma(1+\beta)}{\Gamma(\frac{i}{2}+\beta)} \cdot {}_1F_1(\frac{i}{3},\frac{i}{3}+\beta,-\kappa y) .$$