Rotating Vacuum Seal

Learning from Experiences of SLC and NLC

T. Omori (KEK), with many thanks to Marc-san 28 March 2010, ILC10&LCWS10 at Beijing

SLC and NLC targets

SLC e+ target(s):

The only e+ target(s) for a LC in which we have real operation experience.

NLC e+ target design study:

Very seriously studied (many drawings remains) by SLAC people (they have SLC experience).

Learning from SLC and NLC experiences may help ILC target design.

SLC targets

In the SLC project, three types of targets were made. They were, in chronological order,

- (a) Rotation Target (seal: ferromagnetic fluid),
- (b) Stationary Target,
- (c) Trolling Target (seal: bellows).

SLC Rotation Target

Specification (SLAC-PUB-4437)

• Diameter : 0.15 m

Rotation Speed : no data

Tangential Speed: no data

Vacuum Seal : ferromagnetic fluid

SLC Rotation Target

Specification (SLAC-PUB-4437)

• Diameter : 0.15 m

Rotation Speed : no data

Tangential Speed: no data

Vacuum Seal : ferromagnetic fluid

What happened (SLAC-PUB-4704)

- Capture section failed to achieve high gradient.
- This target was suspect (especially the ferromagnetic rotating seal) as a possible cause of contamination in the RF section.
- This target had never been operated in actual SLC operations.

SLC Trolling Target

Specification

Tangential Speed: 0.1 m/s

Vacuum Seal : bellows

The target was used in SLC running in several years.

SLC Trolling Target

Specification

Tangential Speed: 0.1 m/s

Vacuum Seal : bellows

The target was used in SLC running in several years.

- Bellows is very reliable way to seal vacuum.
 - No Oil, No liquid of any kind --> No cause of contamination
 - Very tight seal --> Good Vacuum

- Bellows is very reliable way to seal vacuum.
 - No Oil, No liquid of any kind --> No cause of contamination
 - Very tight seal --> Good Vacuum
- But bellows allows only reciprocating motion.

- Bellows is very reliable way to seal vacuum.
 - No Oil, No liquid of any kind --> No cause of contamination
 - Very tight seal --> Good Vacuum
- But bellows allows only reciprocating motion.
- NLC target needs much faster tangential speed than SLC.

- Bellows is very reliable way to seal vacuum.
 - No Oil, No liquid of any kind --> No cause of contamination
 - Very tight seal --> Good Vacuum
- But bellows allows only reciprocating motion.
- NLC target needs much faster tangential speed than SLC.
- NLC design: rotation seal other than ferromagnetic fluid.

NLC Rotation Target Design

Specification (SLAC-PUB-6852, SLAC-PUB-7270, ZEROTH-ORDER DESIGN REPORT)

Diameter : 0.2 m

Rotation Speed : 120 rpm (depends on paper/document)

Tangential Speed: 1.2 m/s

Vacuum Seal : labyrinth seals + diff. pumping

+ face seal with carbon contacting

NLC Rotation Target Design

Specification (SLAC-PUB-6852, SLAC-PUB-7270, ZEROTH-ORDER DESIGN REPORT)

Diameter : 0.2 m

Rotation Speed : 120 rpm (depends on paper/document)

Tangential Speed: 1.2 m/s

Vacuum Seal : labyrinth seals + diff. pumping

+ face seal with carbon contacting

Drawing Exits,
But No Prototype

NLC Rotation Target Design Flux Concentrator lon Coil Pump Cage Target-Chamber Target-Pole Tip **Target** Shaft <u>⊠-⊠"⊠</u> Water / Housing Bearing Vacuum 2 Coil Seal Assy lon Target Pump 4-95 Motor 7942A1

Vacuum Seal Design of NLC Rotation Target

Vacuum Seal Design of NLC Rotation Target

Vacuum Seal Design of NLC Rotation Target

ILC Rotation Target

Specification

Diameter : 1 m

Rotation Speed : 2000 rpm (depends on paper/document)

Tangential Speed: 100 m/s

Vacuum Seal : ferromagnetic fluid

Our challenge is more difficult than NLC and SLC.

Summary

- We need to develop rotation vacuum seal for ILC.
 It is challenging issue.
 - Try ferromagnetic seal again? (failed in SLC)
 - Try labyrinth seal? (planed in NLC)
 - New Idea?