

Development of ultra-light pixelated ladders for an ILC vertex detector

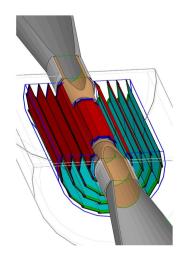
Nathalie CHON-SEN, IPHC on behalf of the PLUME & HP2-WP26 collaborations

http://www.iphc.cnrs.fr/-CMOS-ILC-PLUME.html

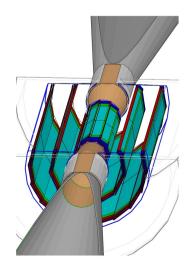
OUTLINE

PLUME Pixelated Ladder with Ultra-low Material Embedding SERWIETE SEnsor Raw Wrapped In Extra-Thin Enveloppe AID Alignment Investigation Device

Introduction


Study motivated by the development of the ILD vertex detector at ILC

* sensitive area for a ladder : 12×1 cm²


* material budget : $\sim 0.16\% X_{0}$ (ILD LOI Target Value) double-sided

~ 0.11%Xo (ILD LOI Target Value) single-sided

- How to fabricate a ladder ?
- Compatibility with running conditions? (e.g high magnetic field)
- Alignment issue?
- Investigate the advantages of double-sided ladders against singlesided ones

2 geometry options for ILD

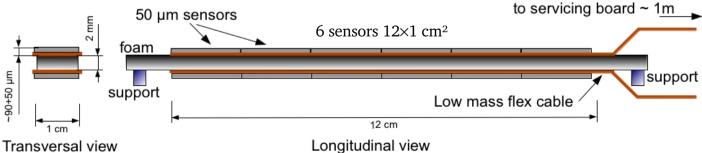
PLUME Pixelated Ladder with Ultra-low Material Embedding

Geometry for an ILD vertex detector, 2009-2012

Objectives:

- achieve a double-sided ladder prototype for an ILD vertex detector by **2012 (DBD)** material budget : $\leq 0.3\% \text{ X}_0$ (final goal for 2012 prototype)
- quantify power pulsing and air-flow cooling effects on final sensor spatial resolution
- evaluate benefits of double-sided concept (mini-vectors) : $\sigma_{i.p}$, alignment, shallow angle pointing (<15-30°), elongated vs squared pixels

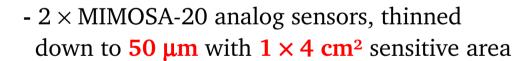
Baseline:

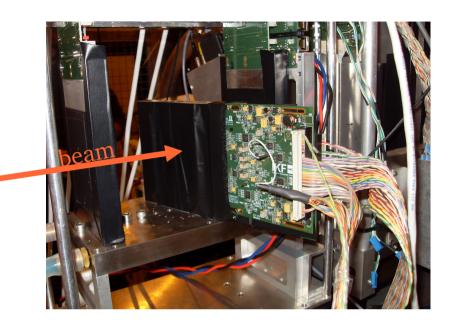

- MIMOSA-26 CMOS sensor (developed for EUDET-BT)
- Power pulsing (≤ 200ms period, ~1/50 duty cycle) and power dissipation (100mW/cm²)
- Air cooling

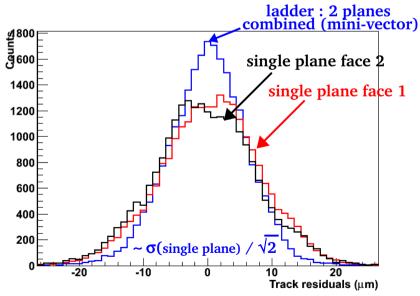
<u>Current concept:</u>

- $6 \times MIMOSA-26$ thinned down to 50 µm
- Kapton-metal flex cable
 (SMD components on flex for decoupling/termination)
- Silicon carbide foam (8% density) stiffener, 2mm thickness
- Wire bonding for flex outer world connection
- Digital readout + servicing board ~ 1 m away (standard PCB board)

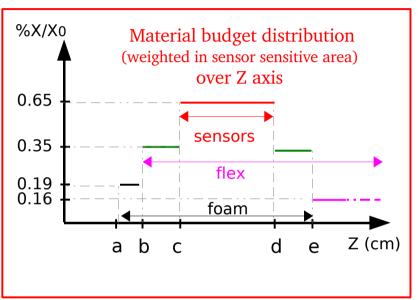
PLUME collaboration:

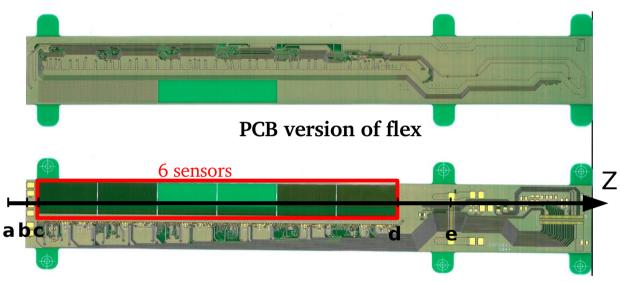

- Bristol University
- Oxford University
- DESY (Hamburg)
- IPHC (Strasbourg)
- Synergy with
- * IK Frankfurt (CBM @FAIR vertex det.)
- * LBNL Berkeley (STAR @ RHIC vertex det.)


PLUME 2009


Goal: to settle the fabrication & beam test procedure

- material budget ~ 0.6 % X₀ (SiC foam 0.18%, sensors 0.11%, glue 0.2%, flex 0.29 %)
- tested @ SPS-CERN, π 120 GeV
- preliminary mini-vector study




PLUME 2010 and onwards

Goal: to realize & test the first version of the full device (relaxed specifications)

- First simultaneous operation of $6 \times$ MIMOSA-26 binary sensors (12×1 cm², 50μ m thickness) on the same flex cable
- Test-setup implementation

2010 Planning:

March: All parts to be delivered at IPHC

April : DAQ tests + mounting sensors on the flex

May-August: Tests of the ladder

(electrical, air flow cooling, power pulsing)

From September : Beam tests

<u>Current status:</u>

- Flex design (Oxford)
- Tools to glue the sensors on the flex (IPHC)
 Mechanical support for transportation & tests
 DAQ & servicing board (power pulsing)
- Silicon carbide foam (Bristol)
 Mechanical support of the ladder
- Power pulsing first (sensor level) tests (DESY)

Material budget ∼ 0.65 % X₀

PLUME Planning (aggressive goals)

Main objectives (2010-2012, DBD):

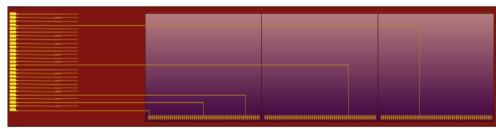
- production : material budget, mechanical stability

- sensor : architecture, integration time (see talk of C.HU-GUO)

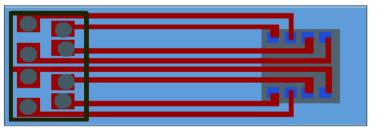
	Sensors	Material Budget	tr.o	Target
2010	2×6 MIMOSA-26	0.65 % X ₀	~100 µs	
2011	2×6 MIMOSA-26	0.4 % Xo	~100 µs	
2012	a) 1×6 MIMOSA-IN 1×6 MIMOSA-IN (elongated pixels) Double-sided ladder with 2 different read-out times	0.3 % X ₀	<50 μs ~10 μs	Inner Layer
	b) 2×6 MIMOSA-OUT with ADC	0.3 % Xo	<100 μs	Outer Layer

Perspectives:

- to be studied within the infrastructure envisaged for AIDA project (e.g alignment)
- interests for (s)LHC experiments ? (e.g ALICE vertex detector upgrade (during "2018 (long) shutdown"))
- possibility to integrate other sensors (ex : ISIS, FPCCD)

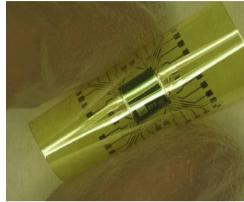

SERWIETE SEnsor Raw Wrapped In an Extra-Thin Enveloppe (HP2, EU-FP7)

Goals:


- to achieve a sensor assembly mounted on flex and wrapped in polymerised film with <0.15 % X₀ for 1 unsupported layer (sensors flex cable film)
- to evaluate the possibility of mounting supportless ladder on cylindrical surface like beam pipe (used as mechanical support).
 Proof of principle expected in 2012

Working program:

- prototype Nr. 1 (2010) made of 1 **analog** sensor : **MIMOSA-18** (analog output, ~4 ms @16MHz)
- prototype Nr. 2 (2011) made of 3 **digital** sensors : **MIMOSA-26** (binary output, ~100 µs @80MHz)


prototype Nr. 2 : summer 2011

prototype Nr. 1 : April 2010

Context of development:

- Collaboration with IK-Frankfurt and GSI/Darmstadt (CBM coll.) within **HP2 project** (WP26)
- Synergy with Vertex Detector R&D for CBM, ALICE (?) etc.

Fully functional microprocessor chip in flexible plastic envelope. Courtesy of Piet De Moor, **IMEC company**, Belgium

(current) IMEC technology for SERWIETE

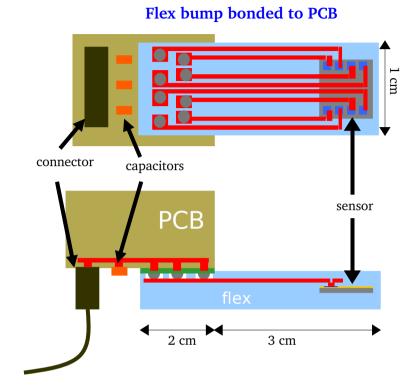
Thickness budget:

6.5 μ m backend (metal and oxide on chip) = **6.5** μ m Si equivalent

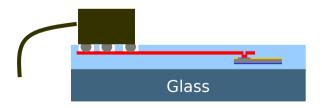
20-25 μ m Si (14 μ m epitaxial layer) = **20-25** μ m Si equivalent

 $2 \times 20 \mu m$ polyimide + Solder mask (25 μm) = 22 μm Si equivalent

Total = $48.5 - 53.5 \mu m$ Si equivalent


Sensor thinned down to 30 µm

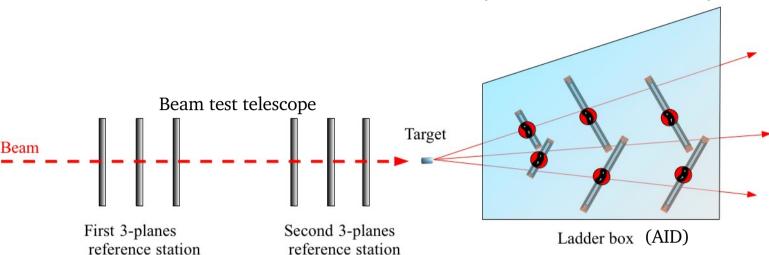
Schedule:


January-February:

Tests on line width and spacing Fabrication of the PCB acquisition board

April: First prototype of the device equiped with one MIMOSA-18 CMOS sensor

SERWIETE on a support



glass carrier (CBM, feasibility study) as a mechanical support and thermal conductor (vacuum operation)

VTX Oriented Infrastructures Proposed for EU-FP7 AIDA project WP-9.2

Collaboration:

PLUME collaboration + Geneva University + Varsaw University + ...

<u>On-beam test infrastructure:</u>

- Very thin removable target
- Large Area beam Telescope (LAT) $(4\times4 6\times6 \text{ cm}^2)$: EUDET-like Beam Telescope
- Alignment Investigation Device (AID): ladder box (2010, 2nd semester)

<u>Off-beam test infrastructure:</u>

- thermo-mechanical studies, including effect of air-flow based power extracting system
- power cycling effect in strong magnetic field, e.g. Lorentz forces on ultra-light ladders

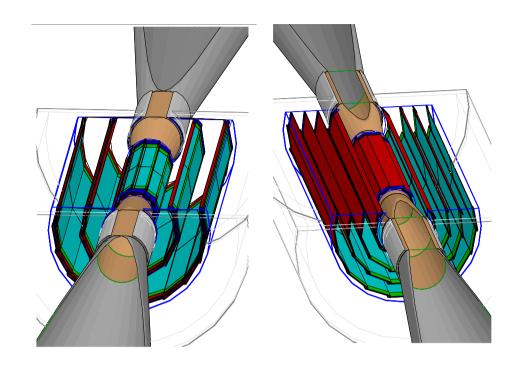
Summary

VTX system integration studies under way to provide answers to the questions raised in perspective of the DBD (2012)

- Ultra-light ladders development ongoing
 - double-sided option: PLUME
 - unsupported option : SERWIETE
- Questions addressed :
 - Ladder material budget
 - Added value of double-sided ladders
 - Alignment issue (Alignment Investigation Device)
 - power-cycling (in magnetic field)
 - air cooling, etc

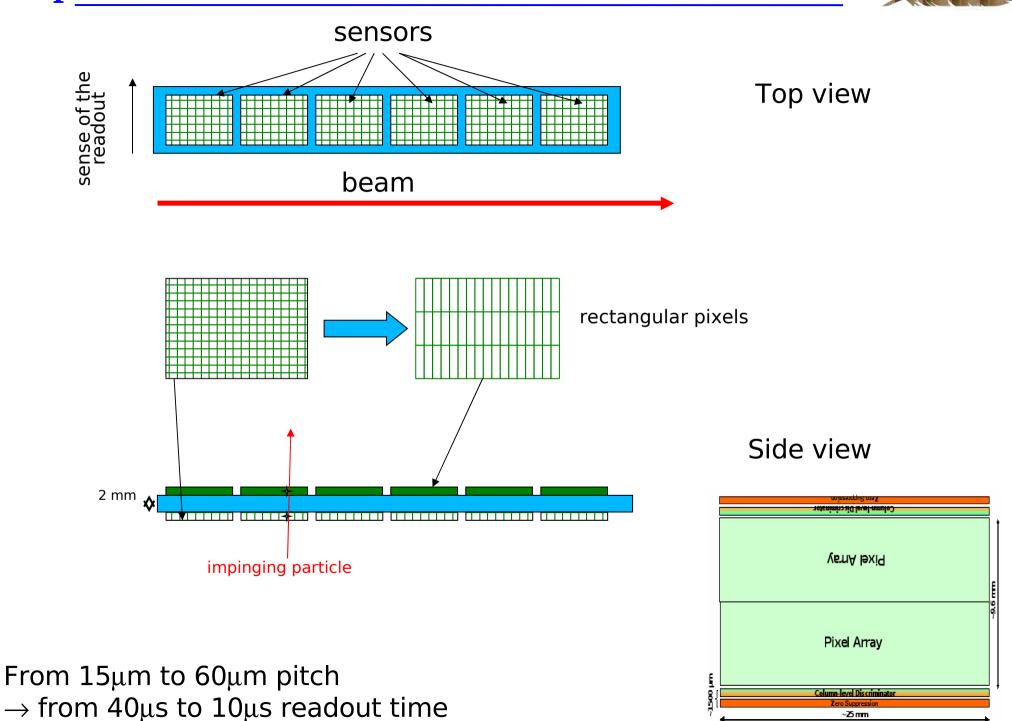
11

BACKUP


ILC vertex detector

Physics goals & running conditions

- single point resolution $\sim 3\mu m$
- material budget $\sim 0.2\% \text{ X}_0/\text{layer}$
- integration time 25 100μs
- radiation tolerance > 300Rad, few 10^{11} n_{eq}/cm²
- $P < 0.1 2 \text{ W/cm}^2$


$$\sigma_{\text{IP}} = a \oplus \text{b/psin}^{3/2}\theta$$

 $a = 5\mu\text{m}, b = 10\mu\text{m GeV}$

Radius:

16 – 60 mm for double-sided ladders, 15 – 60 mm for single-sided ladders

Improve time resolution with double-sided structure

