CLIC Energy Scan

D. Schulte for the CLIC team

LCWS 2010, Beijing March 2010

Luminosity and Background Values

		CLIC	CLIC	ILC
E_{cms}	[TeV]	0.5	3.0	0.5
f_{rep}	[Hz]	50	50	5
f_{RF}	[GHz]	12	12	1.3
G_{RF}	[MV/m]	80	100	31.5
n_b		354	312	2625
Δt	[ns]	0.5	0.5	369
\overline{N}	$[10^9]$	6.8	3.7	20
σ_x	[nm]	202	40	655
σ_y	[nm]	2.26	1	5.7
ϵ_x	$[\mu \mathrm{m}]$	2.4	0.66	10
ϵ_y	[nm]	25	20	40
\mathcal{L}_{total}	$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	2.3	5.9	2.0
$\mathcal{L}_{0.01}$	$[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.4	2.0	1.45

Energy Scans

- Request to run 3TeV CLIC at lower energies
 - with high luminosity
- Energy scans can be large or small
- Scans over a few percent will be handled by tuning the final quadrupole field and adjusting the main linac average gradient
 - preferred is reduction of gradient towrds the end
- But the experiment want to also go to significantly lower energies
 - no concrete description of needs available
 - but from discussions preliminary discussions energy will be change for some months
 - \Rightarrow can do some hardware modifications
- I will focus on the large change in energy

Options to Change Beam Energy

- 1) Extraction at low energy
 - but need extraction and bypass lines
 - compromises fill factor and tunnel design or requires significant hardware intervention
- 2) Remove the end of the linac
 - go down from $3\,\mathrm{TeV}$ by removing the end of the linac
 - one way option
- \Rightarrow For both of these solutions charge remains unchanged
 - 3) We use a lower gradient $(G = G_0 E/E_0)$
 - constant gradient along the linac
 - ⇒ charge needs to be proportional to gradient
 - 4) We reduce the gradient in a part of the linac
 - higher gradient initially
 - ⇒ charge can be reduced almost proportional to gradient

Luminosity for Constant Charge

- Use Rogelio's 3 TeV BDS
- Applies to 1+2
- BDS magnetic fields scaled
 - final double needs to be exchanged for changes of more than $\approx 10\%$
- Geometric luminosity (for constant charge) does not decrease linearly
- \Rightarrow Need to understand reason
 - could be improvement of BDS performance due to reduce radiation at lower energy

Gradient and Bunch Charge

- Applies to option 3 and somewhat to 4
- Scaling $N/N_0 = G/G_0$ and $\sigma_z = {\rm const}$ keep the relative energy spread $\delta(s)$ constant
- We require BNS damping for beam stability

$$\delta(s) \approx \beta_1^2(s) \frac{Ne^2 W_{\perp}}{E(s)}$$

• Emittance growth due to dispersive imperfections scales as

$$\Delta \epsilon_y \propto \left(\frac{\sigma_E}{E} \Delta y\right)^2$$

- \Rightarrow independent of G, for our scaling
- Emittance growth due to wake fields scales as

$$\Delta \epsilon_y \propto \left(\frac{NW_{\perp}(2\sigma_z)}{E}\Delta y\right)^2 E$$

- \Rightarrow improves with smaller G, for our scaling
- Same scaling works in BDS if collimation geometry remains constant
 - could maybe improve for lower energies as final doublet aperture can increase (R. Tomas)

Total Luminosity with Gradient Change

- Significant luminosity loss due to charge reduction
- $\Rightarrow \mathsf{Need} \mathsf{\ to\ compensate}$
 - Spectrum improves with lower energy
 - in particular for reduced charge

Luminosity in Peak with Gradient Change

Strategies for 3)

- One can attempt to mitigate the luminosity loss by
 - a) Changing structure design to increase bunch charge for $3\,\mathrm{TeV}$
 - less luminosity loss for lower energies
 - but need to compromise $3\,\mathrm{TeV}$ performance
 - first indication is that this would be serious (A. Grudiev)
 - b) Increasing repetition frequency of drive beam
 - but what about beam dynamics and klystrons
 - c) Increasing pulse length
 - but pulse length is built into the geometry of CLIC
 - any combination of a+b+c
- Will look at 3b and 3c
- The disadvantage of 4) is that none of these ideas can be applied

Gradient Reduction

- The gradient is reduced by reducing the drive beam current via
 - I) reducing the bunch charge
 - II) reducing the number of bunches per unit time and their charge
 - III) using the on/off mechanism
- We will neglect III) as it is would be mainly used for fine-tuning and does not help to recover luminosity
- ullet Changing the beam energy only on one side does not help to recover luminosity, the loss as a function of \sqrt{s} is slightly larger than for symmetric changes
 - impacts physics

Change of Repetition Frequency (3b)

- For reduced beam current, power in DBA is
 - for constant final energy

$$\frac{P_{RF}}{P_{RF,0}} = \left(\frac{1 + \frac{I}{I_0}}{2}\right)^2$$

- for $E/E_0 = I/I_0$

$$\frac{P_{RF}}{P_{RF,0}} = \left(\frac{I}{I_0}\right)^2$$

• In principle could hope to increase repetition frequency up to

$$f_{rep} = f_{rep,0} \left(\frac{G_0}{G}\right)^2 \frac{\eta}{\eta_0}$$

- \bullet Issues are reduced efficiency of klystrons at lower power and wish to stay at multiples of $50\,\mathrm{Hz}$
 - but could combine two klystrons and use interleaved pusling at low energy

$$\Rightarrow 100 \,\mathrm{Hz}$$
 at $I = 0.7 I_0$, $E = 0.7 E_0$

• Further study is needed on RF and beam

Luminosity in Peak for Repetion Rate Change

Delay Loop

Combiner Rings

Pulse Length (3bIII)

- The pulse length is defined by the geometry of the accelerator
 - \Rightarrow cannot change it arbitrarily

Pulse Length

- Well, some bird triggered an idea
- With small modification of delay loop we can change the combination factor and increase the pulse length
- Can accept longer pulses in main linac since the power is lower
 - strongest constraint from temperatur $P\sqrt{\tau} \leq P_0\sqrt{\tau_0}$
- For $G/G_0 \le 3/4$ can use upper scheme
 - $\Rightarrow 80\,\mathrm{ns}$ longer pulse
 - $\Rightarrow 160$ extra bunches per train

Pulse Length (cont.)

- For $G/G_0 \le 2/3$ can use upper scheme
 - $\Rightarrow 120 \,\mathrm{ns}$ longer pulse
 - $\Rightarrow 240$ extra bunches per train
- For $G/G_0 \leq 1/2$ can use lower scheme
 - need to modify first combiner ring
 - would need larger combiner ring with two pulses as baseline
 - $\Rightarrow 240 \,\mathrm{ns}$ longer pulse
 - $\Rightarrow 480$ extra bunches per train
- \bullet For $G/G_0 \leq 3/8$ and $G/G_0 \leq 1/3$ similar solutions can be used
 - up to 1280 bunches at 1/3 of the charge

• Other options should be investigated

Luminosity in Peak for Pulse Length Change

Luminosity in Peak for Combined Schemes

Conclusion

- Different options of energy scan exist
 - option 3 (gradient reduction) appears a good strategy
- The single bunch luminosity loss could pontentially be compensated in part by
 - higher repetition frequency
 - longer pulses
- Longer pulses appear feasible with minor modifications to the CLIC layout
- More studies need to be performed to verify that no issues exist
- Design impact
 - make all sub-system compatible with 100Hz
 - make all sub-sustem compatible with longer pulses
- Other improvements may be possible (e.g. BDS)

Reserve

Drive Beam Acceleration (3b)

- Constant final energy
 - ⇒ some beam dynamics issues improve (some maybe worse) relative apertures remain the same
- Final energy scaled as the current
 - ⇒ beam dynamics issues remain the same relative apertures become worse
- Effective gradient in DBA

$$\frac{G}{G_0} = 2\sqrt{\frac{P_{RF}}{P_{RF,0}}} - \frac{I}{I_0}$$

• For constant final energy

$$\frac{P_{RF}}{P_{RF,0}} = \left(\frac{1 + \frac{I}{I_0}}{2}\right)^2$$

• For $E/E_0 = I/I_0$

$$\frac{P_{RF}}{P_{RF,0}} = \left(\frac{I}{I_0}\right)^2$$

Comments on Klystron Power and Pulse Rate

• In principle could hope to increase repetition frequency up to

$$f_{rep} = f_{rep,0} \left(\frac{G_0}{G}\right)^2 \frac{\eta}{\eta_0}$$

- But klystron efficiency goes down for lower output power
- But should only run at multiples of 50 Hz
- Igor Syratchev estimates that we can expect to run at 120Hz at a quarter of the nominal output power
 - ⇒ does not work if we run with full drive beam energy
 - \Rightarrow could give factor two at $1.5\,\mathrm{GeV}$ if drive beam energy is reduced
- Could improve this by
 - new klystron design (Erk, Igor)
 - combination of power of pairs of klystron (Alexej G.)
 - but needs exploration (Erk et al.)
- Also need to check that we can achieve stable beam
- Maybe best guess is that we divide power by two with no loss
- Note: you want to power all drive beam accelerating structures

Side Remark: Different Beam Energies

- ⇒ Luminosity loss is slightly faster than for balanced collisions
- \Rightarrow There is no obvious strategy to recover any luminosity
- \Rightarrow Physics would only be willing to accept energy imbalance, if the machine had a strong advantage (L. Linssen)

Options and Issues I

- Try to improve BDS at lower energies (could mainly help for 3+4)
 - 1) Extract beams into bypass line
 - choice of extraction energies
 - design of extraction system (length?)
 - bypass design and integration
 - ⇒ extraction systems would need to be significant and compromise fill factor
 - \Rightarrow does not look too promising
 - 2) Remove end of the linac
 - ⇒ strategy for physics and machine
 - \Rightarrow does not look promising at all

Options and Issues II

- Include the impact of lower bunch charges on damping ring emittances (for 3+4)
- some impact in the horizontal plane
 - 3) Run at lower gradient
 - I) Use structure with larger a/λ to increase bunch charge
 - \Rightarrow redo optimisation
 - a) Reduce drive bunch charge current and energy and increase klystron frequency
 - ⇒ study klystron options
 - b) Increase pulse length
 - Electron and positron main beam are accelerated with one booster linac RF pulse
 - ⇒ slightly larger esistive wall wakefield effects
 - \Rightarrow need larger distance in booster linac 3 TeV
 - Similar problem for injector linac
 - Check implication of missing bunches on
 - ⇒ drive beam dynamics, beam loading compensation and beam phase stability
 - other issues
 - need to identify highest acceptable average current
 - ⇒ looks promising

Options and Issues III

- 4) Use of high gradient in beginning of linac
 - \Rightarrow needs study but not likely to yield any improvement, reduces other luminosity recovery strategies
 - \Rightarrow not too promising option

Drive Beam Accelerator