

Polarized electron source update

Axel Brachmann, John Sheppard, Feng Zhou, Takashi Maruyama,
-SLACMatt Poelker
-Jlab-

LCWS/ILC Meeting, Beijing, Mar. 29, 2010

Laser System

- Slow progress at SLAC due to limited resources (both manpower and M&S)
- Plan is still to complete laser system and generate a polarized electron beam
- Intention is to draw resources from other laser groups at SLAC
- Investment in new pump laser still optional
- Meeting at Jlab on 04/20 to discuss integration of laser system and gun developed by Matt Poelker at Jlab

Laser System SBIR with KM Labs

- Expecting completion of the project in ~ 4 months.
- Also trouble with pump lasers for Regen Amplifier
- Reduced scope of the project:
 - Max repetition rate 1.5 MHz instead of 3 MHz
- Lessons learned from project:
 - Use 2x50W MOPA doubled Nd lasers or fiber-based green lasers to get ~ 100W of pump power
 - These option became available only recently

DC Gun R&D at Jlab

- Most important issue
 - → Reduce field emission from electrodes
- Tests of a variety of materials and polishing techniques^[1]
 - Stainless Steel
 - Diamond paste polishing
 - Electro-polishing
 - Single Crystal Niobium
 - Buffer Chemical Polish
 - Diamond Paste Polish

[1] Work of Ken Surles-Law, Jefferson Lab

Electro-polished Steel

- Results similar to diamondpaste polishing: limiting gradient 5MV/m
- Considerable time saving
- Perhaps better results if we start with smoother surface

Single Crystal Niobium

- Capable of operation at higher voltage and gradient
- Buffer chemical polish (BCP) much easier than diamond-paste-polish

Conventional geometry: cathode electrode mounted on metal support structure

Replace conventional ceramic insulator with "Inverted" insulator: no SF6 and no HV breakdown outside chamber

High Temperature Bake to reduce outgassing rate

- As much "thin-wall" material as possible
- 316LN (L= low carbon, N= nitrogen added for hard knife edges)
- Manufactured and electropolished by NorCal
- 400C bakeout for 9 days, under vacuum
- Pumped by oil-free turbo, then added ion pump, while monitoring "effluent" with RGA
- At 9th day, vacuum still improving by ~15% per 24 hours
- RGA shows H2, methane, CO and HCl (from electropolishing)
- Rate of Rise method, with spinning rotor gauge, outgassing rate 10⁻¹³TL/scm², one order of magnitude improvement
- Vented and remeasured good rate, on test chamber
- Now working to de-gas internal components...

Inverted Gun assembly

CEBAF Gun operation

- Inverted Gun installed at CEBAF, operational since July 23, 2009
- Extractor gauge 2x10⁻¹² Torr (raw value)
- Happy at 100kV, conditioned to 110kV, briefly went to 125kV
- Opportunity at CEBAF for operation > 100kV
- Lifetime ~ 70C at 150uA ave. current
- Aggressive commissioning of 2nd InvGun at Test Cave. Under vacuum - with Nb electrode. Ready for beam....

Lessons Learned

- We learned at CEBAF that it is extremely important to manage ALL of the extracted beam
 - Anodized edge: beam from outside 5 mm active area can hit beampipe walls, degrade vacuum, reduce operating lifetime
- ILC/CLIC requires large laser beam to reduce current density and overcome space and surface charge problems
- Need a cathode/anode design that ensures uniform emittance across beam profile. A beam that can be easily managed/transported, with *ZERO* beam loss.

Photocathode R&D

- Doping Profile Optimization:
 - Measure QE/polarization/surface charge limit as a function of doping level on the surface (5e18, 1e19, 2e19, and 5e19):
 - 5e18 has lower QE but QE of other cases are similar
 - Polarization does not strongly depend on the doping level on the surface.
 - Measure surface charge limit still pending

Doping Profile Optimization

Internal Bias Effect and DBR

 Measurement of the internal bias effect on QE, polarization, and surface charge limit (wafers are delivered: single layer gradient doped AlGaAs)

Constant doping

Gradient doping

Distributed Bragg Reflector (DBR) development (SBIR pending)