Revisit parameters for Conventional sources

Tohru Takahashi contribution for LCWS/ILC2010

Motivation

- Preparation of positron sources by;
 - well established scheme and/or developable with existing resources
- 300Hz scheme
 - relaxes thermal problem on targets
 - lower speed rotation target will do
 - but still have the shock wave problem

survey (again)parameters of conventional targets in the drive beam energy – target thickness plane

See if conventional sources survives the ILC criteria

Methods

- Simulation by G e a n t 4 with Tungsten
 - total positron yield
 - accepted positron yield with AMD acceptance
 - T.Kamitani, L.Rinolfi CLIC note 465
 - Peak Energy Deposit Density (PEDD)
 - Total Energy Deposit (TED)
- In space Beam Energy Target Thickness
 - beam spot size at 1.0mm, 2.5mm, 4.0mm

Acceptance estimate

CLIC note 465
[r/0.53]² + [pT/11]² = < 1
pT < 0.1875 MeV/c + 0.625 pL
1.5 MeV/c < pL < 17.5 MeV/c

accepted e+ yield and PEDD with conventional scheme

e- directly on to Tungsten

$$\sigma$$
=2.5mm

accepted e+ yield and PEDD with conventional scheme

e- directly on to Tungsten

$$\sigma$$
=4.0mm

In the case of 300Hz scheme

different triplet hit different position on the target

132bunches in a triplet hit the same position on the target

Thermal diffusion

$$\begin{split} T(t) \sim & T_0 e^{\alpha t} & \lambda = 174 W/m \cdot K \\ \alpha = & -\frac{\lambda}{C_V} \beta^2 & C_V = 2.5 \times 10^6 J/m^3 \cdot K \end{split}$$

time constant of the diffusion depends on beam spot size $\sim 1/\beta$

numerical calculation of thermal diffusion shows

	1D	2D	3D
time constan σ =2.5mm t σ =4.0mm	280ms	80ms	40ms
	750ms	200ms	100ms

time constant is order of 100ms >> Ttriplet $\sim 1 \mu s$

Assumption

each triplet hits different position on the target elatively low (1~2m/s)rotational target

duration of a triplet ~ dumping time of shock wave shoter than time scale of thermal dissusion

132 bunches in a triplet contributes both shock wave and thermal damage

Assumption

132 bunches

make a shock wave

heat same position on the target

a triplet: 132 bunches 992ns

3.3ms

each triplet hits different position on the target

a train: 20 triplet

= 2640 bunches 63ms

Parameter Plots for 300 Hz scheme

e- directly on to Tungsten

σ =2.5mm

Parameter Plots for 300 Hz scheme

e- directly on to Tungsten

 σ =4.0mm

summary

- Conventional target might have solution for ILC with 300Hz scheme
- to go forward
 - need detail study for capture section as
 - relatively large beam size is preferred
 - heating has to be studied including cooling system
 - shock wave threshold has to be understood particularly under multi bunch condition