Distinguishing the NMSSM and the MSSM at the ILC using Fittino

Tony Hartin

- * What are General Supersymmetry/MSSM/SPSla'/NMSSM?
- X SUSY Breaking, mass mixing matrix and mass spectra
- MSSM/SPSla'/NMSSM mimic points
- What is Fittino and what does it do?
- X Fittino fits and MSSM/NMSSM truth plots

MSSM/SPSla'

General SUSY has > 100 parameters. However observation severly constrains these

Restrictions

- • $BR(\mu \rightarrow e\lambda) \rightarrow 0$ Implies off diagonal elements of slepton mass matrices ->0
- $\bullet K^0 \leftrightarrow \overline{K^0}$ CP violation in kaon system restricts mixing of first and second generation squarks

MSSM-22 Parameter Set

- Gaugino masses M₁,M₂,M₃
- 1,2nd Gen Mass (e,e,u,u,u,d)
- 3rd Gen Mass $(\tau_1, \tau_2, t_1, t_2, \beta_R)$
- M_A , μ , tan β
- Trilinear (Ae, Au, Ad, AT, At, AB)

Soft SUSY Breaking universality

- All soft SUSY breaking parameters are real
- · Sfermion Mass matrices diagonal
- Trilinear couplings & Yukawa couplings

SPA/SPSIa' points

- An agreed set of parameters and conventions
- · Consistent with experimental data
- Particle masses are fairly light in order to be testable at LHC/ILC

NMSSM - theoretical

Mu Problem

- μ is the mass term of the two Higgs doublets, H_u , H_d
- It is a free parameter and has dimensions of mass.
- Phenomenologically, m must be of the order of the SUSY/EW Breaking mass scale (~250 GeV)

Naturalness

Terms which appear in the Lagrangian should have units the order of the scale at which the effective theory breaks down – the Plank scale (~1019 GeV)

so...NMSSM

- Introduce an additional scalar field \$\fo\$ to which the Higgs's couple and is subject itself to symmetry breaking (i.e. move higgs higgsino mass term from the superpotential to the soft susy breaking Lagrangian)
- Additional singlet/singlino Superfield S
- •Mu term replaced by trilinear fields $\mu \hat{H_1} \hat{H_2} \rightarrow \lambda \hat{H_1} \hat{H_2} \hat{S} + \frac{\kappa}{3} \hat{S}^3$ $\mu \, eff = \lambda \, \langle \hat{S} \rangle$
- •2 extra Higgs: scalar: H¹ H² H³

 psuedoscalar: A¹ A²

 charged H[±]
- l extra neutralino χ^0_i , χ^0_2 , χ^0_3 , χ^0_4 , χ^0_5

Obtaining observables: Chargino mass mixing

- Solve characteristic equations to get Parameters -> masses
- Neutralino sector mixes $(\tilde{H}_u^+, \tilde{H}_d^-, \tilde{S})$ with (\tilde{B}, \tilde{W}^3) for NMSSM
- Use a Spectrum calculator like Spheno to Get all masses and all cross-sections for a particular model (MSSM or NMSSM)
- Are there indistinguishable sets of observables?

NMSSM - neutralino sector

mix
$$(\tilde{H}_u^0, \tilde{H}_d^0, \tilde{S})$$
 with (\tilde{B}, \tilde{W}^3)

$$M_1 \quad 0 \quad -\frac{g_1 v_d}{\sqrt{2}} \quad \frac{g_1 v_u}{\sqrt{2}} \qquad 0$$

$$M_1$$
 0 $-\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ 0 M_2 $\frac{g_2v_d}{\sqrt{2}}$ $-\frac{g_2v_u}{\sqrt{2}}$ 0 0 $-\mu_{\text{eff}}$ $-\lambda v_u$ 0 $-\lambda v_d$ $2\kappa s + 2\mu'$

Decoupling limit

- For the coupling Between S and H_1, H_2 to vanish $\lambda \rightarrow O$
- But $\lambda < S >$ is the effective mu term so $< S > \rightarrow \infty$
- <S> scales as $1/\kappa$ so $\kappa \rightarrow 0$
- However $\kappa < S > (\infty \text{ mass of } \chi^0_5)$ is still free to vary

•χ°5 can be the LSP!

Displaced vertices are possible
 Do not allow this for mimic points study

A "difficult" ILC NMSSM/MSSM point

Moortgat-Pick, Hesselbach, Franke & Fraas hep-ph/0502036 (ILC study)

	MSSM	NMSSM	
M_{1}	375 GeV	360 GeV	
M_2	152 GeV	147 GeV	
tanβ	8	10	
μ	360 GeV	-	
$\mu_{ ext{eff}}$	-	457.5 GeV	
K	-	0.2	
$Mass(\tilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle 1})$	138 GeV	138 GeV	
$Mass(ilde{\chi}^{\scriptscriptstyle 0}_{\scriptscriptstyle 2})$	344 GeV	337 GeV	
Mass($\tilde{\chi}_{1}^{\pm}$)	139 GeV	139 GeV	
$Mass(\tilde{e}_{\scriptscriptstyle L})$	240 GeV	240 GeV	
$Mass(\tilde{e}_{\scriptscriptstyle R})$	220 GeV	220 GeV	
Mass(\tilde{v}_e)	226 GeV	226 GeV	

Define a distance function:

$$D_{NM} = \sqrt{\sum (m_{\chi_1^0}^{NMSSM} - m_{\chi_1^0}^{MSSM})^2 + (m_{\chi_1^{\pm}}^{NMSSM} - m_{\chi_1^{\pm}}^{MSSM})^2}$$

MSSM/NMSSM mimic points for light neutralino/chargino observables

At the ILC cannot distinguish

NMSSM/MSSM (at this Par point)

For s=400,500 GeV x-sects

Need s=650 GeV x-sects

Enter, Fittino

- Fit a set of observables (masses, xs, Br, decay widths) to parameters $(M_1,M_2,\mu,\tan\beta)$ within a SUSY model (MSSM,NMSSM)
- If OBS $(O_1,O_2,...,O_n)$ and Params $(P_1,P_2,...,P_m)$, then $O_i=F(P_1,P_2,...,P_m)$.
- · Fits can be done at tree level (rough) and then with loops
- Calculate χ^2 for the fit of OBS to Params n-dimensional surface in parameter space

T.Hartin, LCWS2010 Beijing

Mar 26, 2010

Fittino NMSSM/MSSM fit

Schema:

- Choose the "difficult" hepph/050236 NMSSM/MSSM point
- For model-specific parameters, μ (MSSM) and λ , κ , μ eff (NMSSM) fix λ , κ and fit μ and μ eff.

So Both NMSSM and MSSM fit to 22 parameters

- Fit the $\widetilde{\chi}^0_1$, $\widetilde{\chi}^0_2$, $\widetilde{\chi}^{\pm}_1$, \widetilde{e}_L , \widetilde{e}_R , \widetilde{v}_L masses. Fix other masses
- Other observables $\sigma(e^+e^- \rightarrow \chi^{0,\pm}_{light})$ at 400,500,650 GeV, polarised
- Check NMSSM OBS->NMSSM params fit with "toy fits" (OBS smeared within their errors T.Hartin, LCWS2010 Beijing

NMSSM \leftrightarrow NMSSM Params - OBS = 15

NMSSM/MSSM χ^2 correlation

s^{0.5} = 400,500 GeV Polarised \$\frac{2}{2}\$Unpolarised Beams

s^{0.5} = 400,500,650 GeV Polarised \$\frac{2}{2}\$ Toyfits

MSSM(Param) <-> NMSSM(Obs)

# Jo	ob chisq	TanBeta	M1
#			
11	4027.256477	24.8969	509.551
14	4025.688755	23.1517	510.37
01	4043.016866	23.1182	510.046
27	3695.092157	25.6162	514.124
43	3923.791504	25.5593	375.707
#			

NMSSM/SPSla' mimic points

SPSIa' point is a fixed parameter set

M_1	M ₂	M_3	tanβ	μ
103.3 GeV	193.2 GeV	571.7 GeV	10.0	396.0

SPS1A'/NMSSM mimic points (in blue) for light sparticle observables 500 -460 - μ_{eff} 420 -380 180 190 200 M_2 210 85 90 120 115 110 105 100 **9**5 M₁

Within the mimic points we look for parameter regions which have the same set of decays:

eg
$$e^+e^-\! o ilde{ au}_1^+ ilde{ au}_1^-\! o au^+ ilde{ ilde{\chi}}_1^0 au^- ilde{ ilde{\chi}}_1^0$$

Resolving SPSIa'/NMSSM mimic points

ILD Optimisation at SPSIa'

DESY FLC Stau study (arXiv:0908.0876vl)

- Full mokka simulation with
 ILD detector
- 500 fB^{-1} , $s^{0.5} = 500 \text{ GeV}$
- $\bullet T_1$ is the NLSP
- $m(\tilde{\tau}_1) = 107.69 \pm 0.06 \pm 1.1 \Delta m(LSP)$
- $m(\tilde{\tau}_2) = 183 \pm 11 \pm 18 \Delta m(LSP)$

SPSIa'/NMSSM X2 correlation

Repeat at lower integrated luminosity to put contour around the mimic areas

The ultimate challenge: the limit NMSSM>MSSM

MSSM is a subset of the NMSSM

Conditions for MSSM=NMSSM:

• $\kappa=0$, $\lambda \to 0$, $< S > \to \infty$, fixed μ_{eff}

Generate
NMSSM/MSSM
correlation
plot at each $\lambda,<$ S> point

Obtain a 'truth plot' i.e. find how well Fittino can distinguish models in the limit NMSSM>MSSM

Summary/Ongoing work

- (1) NMSSM is an extension of the MSSM introducing an additional scalar field in order to solve the "mu problem"
- (2) Analysis of the MSSM and NMSSM mass mixing matrices suggest similar mass spectra of the light sparticles
- (3) Defined a distance function between light sparticle observables in MSSM/NMSSM and then do parameter scans using Spheno to find "n-D mimic volumes" in parameter space
- (4) Run Fittino at the mimic points with additional observables in order to reduce the show the extent to which the mimic points can be distinguished
- (5) The hep-ph/0502036 NMSSM/MSSM mimic point is already discriminated with observables at $s^{0.5}$ =400,500 GeV using Fittino
- (6) Introduce more realistic experimental errors on observables at the SPSIa' point, using ILD optimisation studies

Backup

General Supersymmetry

Q |boson>=|fermion>; Q |fermion>=|boson>

Supermultiplets of Super partners

L - left handed (s) fermions

E - right handed (s) fermions

Q - left handed (s) quarks

U - right handed up (s) quarks

D - right handed down (s) quarks

Hud - 2 Higgs multiplets

B - U(1) BOSON/BINO

W - SU(2) Bosons/winos

G - SU(3) Gluons/Gluino

SUSY symmetry Breaking

We can parametrise the susy Breaking Lagrangian By requiring no new quadratic divergences

$$L_{soft} = -\frac{1}{2} \left(\boldsymbol{M}_{1} \tilde{\boldsymbol{B}} \tilde{\boldsymbol{B}} + \boldsymbol{M}_{2} \tilde{\boldsymbol{W}} \tilde{\boldsymbol{W}} + \boldsymbol{M}_{3} \tilde{\boldsymbol{g}} \tilde{\boldsymbol{g}} \right) + \dots$$

Higgs sector

2 complex doublets ->8 dof

3 dof W +, Z°; 5 dof h°, H°, H +, A°

3 Parameters: MAO, mass mixing parameter μ and $tan\beta = v_d/v_u$

Example Fittino run

Input observables with real/expected errors

```
Fittino example input file
###
                  for MSSM parameters fit
97.7642 GeV +- 0.05 GeV # +- 0.4 GeV
massNeutralino1
massNeutralino2
                     184.346 GeV +- 0.08 GeV # +- 1.2 GeV
massNeutralino3
                    -404.141 GeV +- 4.0 GeV # +- 1.1 GeV
massNeutralino4
                  417.049 GeV +- 2.3 GeV # +- 1.1 GeV
massChargino1
                184.133 GeV +- 0.55 GeV # +- 1.0 GeV
massChargino2
                 418.502 GeV +- 3.0 GeV # +- 3.4 GeV
```

Chose the SUSY model and Input some parameters

- Run once and Get a χ^2 for one "toy fit"
- Smear starting value of observables within their errors and get n toy fits

Neutralino mass mixing

MSSM

mix
$$(\tilde{H}_{u}^{0}, \tilde{H}_{d}^{0})$$
 with $(\tilde{B}, \tilde{W}^{3})$

$$\begin{pmatrix} M_1 & 0 & -\frac{g_1 v_d}{\sqrt{2}} & \frac{g_1 v_u}{\sqrt{2}} \\ M_2 & \frac{g_2 v_d}{\sqrt{2}} & -\frac{g_2 v_u}{\sqrt{2}} \\ & 0 & -\mu_{\text{eff}} \\ & 0 \end{pmatrix}$$

NMSSM

mix
$$(\tilde{H}_u^0, \tilde{H}_d^0, \tilde{S})$$
 with (\tilde{B}, \tilde{W}^3)

$$\begin{pmatrix}
M_1 & 0 & -\frac{g_1 v_d}{\sqrt{2}} & \frac{g_1 v_u}{\sqrt{2}} & 0 \\
M_2 & \frac{g_2 v_d}{\sqrt{2}} & -\frac{g_2 v_u}{\sqrt{2}} & 0 \\
0 & -\mu_{\text{eff}} & -\lambda v_u \\
0 & -\lambda v_d \\
2\kappa s + 2\mu'
\end{pmatrix}$$