

Updates on EC mitigation studies at KEKB

Y. Suetsugu on behalf of KEKB Vacuum Group

- Electron cloud issues for Super KEKB
- R&Ds about
 - Clearing electrodes
 - Grooved surfaces
- Summary and Remained issues

- Electron cloud instability can be a serious problem for positron/proton rings, and the Super KEKB positron ring is no exception.
- The threshold of average electron density to excite the single-bunch instability for SKEKB is ~1x10¹¹ e⁻/m³. (from a recent simulation by K. Ohmi and Y. Suzaki @LER2010)

 $\begin{array}{lll} L = & 8E35 \text{ cm}^{-2}\text{s}^{-1} \\ \epsilon_x = & 1.7(\text{e}^{-}) \sim 3.2(\text{e}^{+}) \text{ nm} \\ \text{Circumference} = & 3016 \text{ m} \\ \text{Energy} = & 4.0 \text{ GeV} \\ \text{Beam current} \sim & 3.6 \text{ A} \\ \text{Bunch numbers} = & 2500 \\ \text{Bunch current} = & 1.4 \text{ mA} \\ \text{Bunch charge} = & 14 \text{ nC} \\ \text{Bunch spacing} = & 4 \text{ ns} \\ \text{Bunch length} = & 6 \text{ mm} \\ \text{Bending radius} = & 71 \text{ m} \\ \end{array}$

Super KEKB site (Tsukuba)

On the other hand, the expected average electron density without any cures is

$$< n_e > \sim 5 \times 10^{12} e^{-/m^3}$$

- Estimated from experiments so far at KEKB, for a circular copper pipe (φ 94mm), 4 ns spacing, 1 mA/bunch, and no solenoid field.
- Any countermeasures are required to reduce <n_e> down to 2%! (to ~1x10¹¹ e⁻/m³)
 - Main contributions are from drift (field free) regions and corrector magnets regions: ~90 %
 - Solenoid field, beam pipes with antechambers and with TiN coating (if aluminum pipe) should be used for these region.
 - Beam pipes with antechambers and with TiN coating (if aluminum pipe) will be also used in magnets.

Established counter measures

(from simulations and experiments at KEKB LER [ϕ 94])

- Solenoid filed at drift section (~50 G): Effective to both photoelectrons and secondary electrons →~1/50
- Ante-chamber scheme : Effective to photoelectrons.
 Adopted at PEPII LER →~1/5
- TiN coating : Effective to secondary electrons. Adopted at PEPII LER →~3/5

However,

- Even if these countermeasures are applied, the <n_e> is still a borderline value.
- The remaining electrons are mainly in dipole regions (bending magnets and wiggler magnets).
 - →Other effective cures in dipole field regions are required!
- The following countermeasures has been studied at KEK.
 - Clearing electrode
 - Absorbs electrons by an electro-static field
 - Grooved surface
 - Reduces effective SEY geometrically
- Experiments have been proceeding at KEKB LER.
 - Also as a part of US-Japan collaboration for ILC DR

- Very thin electrode structure was developed.
 - 0.2 mm Al₂O₃ insulator and 0.1 mm tungsten (W) electrode formed by a thermal spray method
 - Good heat transfer and low beam impedance
 - ±1 kV is OK.
 - Flat connection between feed-through and electrode

- A test chamber was installed in a wiggler magnet.
 - Magnetic field: 0.78 T
 - Effective length: 346 mm
 - Aperture (height): 110 mm
 - Photons: 1x10¹⁴

photons/s/m/mA

- An electron monitor and an insertion with an electrode are placed at the center of a pole, face to face.
 - Electron monitor has an RFA and 7 strips to measure spatial electron distribution (~40 mm width in total).

Results: Comparison with a flat surface with TiN

- The electron density decreased to less than $\sim 1/100$ at $V_{\rm elec} > \sim +300$ V compared to the values at $V_{\rm elec} = 0$ V (W) and a TiN-coated flat surface.

Two-time experiments.

- Electron currents for the case of tungsten ($V_{\rm elec}$ = 0V) is similar to the case of flat TiN-coated surface.
 - ←Rough surface?
 - The second result was lower than the first one.
 - ← Aging of surface?
 - No extra heating of electrode and feed-through was observed.

(Central

collectors of

- Recent tests: Application to a real beam pipe with antechambers.
 - Final check of feed through and heating of electrode.

Results_1: Heating

- Temperature behind the electrode was measured.
- No cooling channels in the back of the electrode

- Estimated input power was ~40 W/m: reasonable value.
- No heating at feed through.

Results 2: Effect of electrode

- Electron numbers around the beam orbit were measured using an electron monitor with no magnetic field (B=0).
- Reduction in the electron number by a half was observed.
- The effect was smaller than the case in a wiggler magnet.
 But it is expected from a simulation.
- An experiment in a magnetic field is planed.

Grooved Surface_1

- Grooved surface reduces SEY geometrically.
 - The properties have been also studied using the same experimental setup to that of the clearing electrode.
 - B = 0.78 T
- Parameters of grooves investigated:
 - Material: Cu, Al-alloy, SS
 - $\beta: 20~30^{\circ}, R_{t}: 0.1~0.2 \text{ mm}$
 - d: 2.5~5 mm

Y. Suetsugu, H. Fukuma, M. Pivi and L. Wang, NIM-PR-A, 604 (2009) 449

Grooved Surface_2

- Results: comparison with a flat surface with TiN
 - The electron density decreased to $1/6\sim1/10$ compared to the case of a flat TiN-coated surface ($\beta=20^{\circ}$). That is, less than $\sim1/10$ compared to a flat copper.

Electron densities for grooves surfaces in these parameters were lower than the case of a flat TiN-coated surface. Smaller electrons even if no-coating: TiN coating improves the effect, but the groove structure seems much effective to reduce SEY. Less density for smaller β and R_t.

2010/3/28 ILC2010 @Beijing

Grooved Surface_3

Comparison between clearing electrode and groove
 All data so far are plotted in one figure

Summary of countermeasures

Updated comparison among mitigation techniques

Based on the experiments so far. Standard = Cu (circular pipe)

Materials, methods	Relative effect	Notes
Al	~20	Coatings are indispensable.
Cu (Circular pipe)	1	Standard
Solenoid [Drift space]	~1/50	~50 G, considering gaps (<1/1000 if uniform)
Antechamber	~1/5	<~1/100 for photoelectrons
Cu (AI) +TiN coating	~3/5	Relatively high gas desorption
Groove (β~20°) [in B]	~1/10	More effective for top and bottom
Electrode [in B]	~1/100	Most effective

 Clearing electrodes and grooved surfaces can be strong countermeasures in dipole fields, more effective than any coatings.

Impedance issues

Impact on the beam impedance (just started)

- Compared to the resistive wall (ϕ 90 mm, Cu)

D=40 R=45

- Clearing electrode, assuming;
 - One electrode (top)
 - Resistive wall of W is included.

	M	Electrade (fim) R = 45 mm
C	sarge /	σ _s = 6 mm
5x10"	/ / //	tit = 0 mrad W. Al_O_ = 0.2 mm
	- / : \	k = 0.211 V/nC
0		2
	N/	
		Resistive wall (*Im) R = 45 mm
-Ex10 ⁹	 	Copper
1	M	e_ = 6 mm
	V	k, = 0.822 V/nC

	1 piece (1.7m)	Total 100 (~170 m / 3000 m) [in wiggler magnets]
Loss factor	~x1.3	~x 1.02
Wake potential (height)	~x 4	~x 1.17

Grooved surface, assuming;

- Grooves at top and bottom
- Increase in resistive wall of 50 % by grooved surface is included.

2×10° 1.6×10°	Titt=0	Resistive wall (1 m)
1x10 ⁹	Charge	R = 45 mm Copper
₹ ".		σ = 6 mm k = 0.822 V/nC
Wake transmitted [V/C]		1,2-0.022 VIIIC
alle o	\prec	Groove (1m)
e -5×10 ⁸	- 1/	D = 40 mm
-1×10°	V	β = 20° d = 6 mm
-1.5x10°	-V	© = 8 mm
-2×10°		k ₂ = 0.055 V/nC
-0.1	04 -0.02 0	0.02 0.04 0.06 0.08 0.1 s [m]

	1 piece (4 m)	Total (~520 m / 3000 m) [in Dipole magnets]
Loss factor	~x 1.03	~x 1.005
Wake potential (height)	~x1.25	~x 1.05

Summary & Remained issues_1

- Super KEKB is challenging for the vacuum system.
- For countermeasures against electron cloud in a dipole field, clearing electrodes and grooved surface are found to be very effective.
 - Ante-chamber and solenoid reduce main part of electrons.
 - By using clearing electrodes and grooved surface in dipole field, the average electron density further decrease.
 - Grooves were also effective in drift space (experiment of SLAC).
 - The affect on the beam impedance should be considered carefully.
 - Estimation about the effect of transverse impedance will start soon using SAD.

Summary & Remained issues_2

- Beam test for the clearing electrodes will continue in the next run (from May)
 - Effect of magnetic field
- R&D for aluminum beam duct with grooves is undergoing
 - Extrusion
 - Beam test in a drift space

END