Goals at this meeting

1. Review commissioning status - BPMs, Carbon WS, BSM etc. and software - High Beta Optics beam tuning 2. Plan the strategy and milestones - in details for the 1st and 2nd goals up to 2010 and 2012, respectively, , identifying key issues 3. Future plan after TDP2, i.e. 2013 - SC Q proposal Update

T. Tauchi, A.Seryi, P.Bambade, 9th ATF2 Project Meeting, 14-17 December 2009

ATF2 beam line and planned/proposed R&Ds 2008 - 2010 - 2012 - 2014 -

2010年3月11日木曜日

Parameters at ATF2

to be updates

IP Parameter	nominal	May 2009	Dec. 2009
Beam energy	1.3GeV	1.3GeV	1.3GeV
Emittance in x	2 nm	1.7nm	1.7nm
Emittance in y	12 pm	11pm	<10pm
Beta function in x	4 mm	8cm	8cm
Beta function in y	0.1mm	lcm	lcm
beam size in x	2.8 µm	~10 µm	~10 µm
beam size in y	35 nm	not yet	1.5 µm

DR Emittance Summary

Emittance situation is similar to that in May 09. Measured ε_y =8.56±0.46/ 8.43±1.79/ 3.50±1.78/ 2.00±1.61pm by XSR/ IF/ LW00/ LW01. Study for the discrepancy is still on going.

S.Kuroda, 9th ATF2 Project Meting, 14-17 December, 2009

Hardware, recently commissioned 1. Carbon wire scanner with 5μ m at the post IP note : 45 degree scanner with 10μ m tungsten wires have been fully commissioned - vertical scanner with three 5μ m carbon wires one horizontal and two +/- 1.3 degree wires 2. OTR at the beginning of extraction line 3. Stripline BPMs with short and large aperture note : long and small aperture ones have been well calibrated. 4. S-band BPMs

- some issue (software?) remains

5. Shintake monitor

note : laser wire mode has been fully commissioned

- Interference mode, 2°, 8°, 30° and 174°
- IPBPM will be installed in next year

"ATF2" site works in this summer done 1. Monalisa - Vibration measurement at IP 2. Straightness monitor done - installation 3. Laserwire (LW) done - installation/commissioning the laser system 4. Shintake monitor done - new screen, wire scanner and new laser - RHUL/Oxford-LW laser transport line not yet 5. Alignment at ATF2 beam line done 6. HLS system done - a collaborator from SLAC

ATF beam operation schedule

13th Nov. First signals from the interference

All the BPMs are calibrated.

ATF2 beam tuning

50% for ATF2 as a general rule

Beam Extraction succeeded from DR to ATF2 by using Fast Kicker

One of the significant technology to realize the International Linear Collider is the fast kicker of the damping ring(DR), which injects/extracts the long bunch train to the DR/ from the DR. The left side picture shows the proto-type of the fast kicker installed in the DR of ATF-KEK. The beam is extracted by using the fast kicker, the right picture shows the beam profile at the end of the ATF2 beam line.

First Multi-bunch Extraction Oct.28

Bunch interval
 5.6ns

ilr

ΪĹ

- Kicker excitation interval 308ns
- Upper line:
 bunch charge
 measured in the
 extraction line
- Hor: 400ns/div
- Ver: 0.2nC/div

PAC Review, Nov.2.2009

K.Yokoya

Comparison of Compton Signal

- Comparison of S/N ratio in laser wire mode
 - Beam is focused at the IP
 - Laser width at the IP are almost same (about 20um σ)
 - ICT-DUMP charge 0.5 x 10¹⁰ electron
- In spring run
 - Background was reduced after the beam orbit tuning from the EXT and fine tuning around the Final Doublet.
- In autumn run
 - Background was reduced relatively easy.
 - Background didn't exceed 10 GeV if the beam was aligned some extent.

First Interference result by IPBSM

Obtained Result

- Comparison with tungsten wire scanner
 - Curve shape of the Shintake Monitor measurement is similar to the wire scanner measurement
 - Large offset exists in the Shintake Monitor measurement

- Consistency check when the laser crossing angle is changed.
 - rather consistent result

T.Yamanaka, 9th ATF2 Project Meting, 14-17 December, 2009

2010年3月11日木曜日

Issue on the laser waist displacement

The collision point was not set to the laser waist.

ATF2 BPM layout

- S-band : 4 (dipole) + 1 (ref)
 - Variable attenuation and gain, unlocked local oscillator
- C-band : 33 (dipole) + 4 (ref)
 - Locked LO system
 - Attenuation : 20 db in all channels (I removed for tests)
 - 10 corrector calibrated
 - 23 mover calibrated S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

Software system

- Key element for cavity BPM usage
 - Quick control of all BPM functionality and operating algorithms
 - EPICS based + EDM + python + scipy + matplotlib + catools + ...
- Complete control of entire system
- Easy to integrate new tests
 - IP-BPM electronics + tilt monitor

000					X /atf/contr	ol/epics/atf	2/cbpm/	/edm/summar	y.edl				
Diagnostics	HW check	SIS Co	nfig T/LO	/Cal RF	Debug	Correlatio	n dip a	mp dip pha	X pos	Y pos	Status r	norm	EXIT
Mode	Beam	Cal	Si	m		History	r hi	s dīp amp	dip pha.		Pulse (0	
Expert	Save/resto	re DAQ Co	ntig SBan	d RF		Waveform	all ru	wfs all x wfs	all y wfs	CAS CASR Tor	R bpmCa	asr_2009120 asr_2009120	8_162758.dat 7_014639.dat
	cal sta	at	action		ca	al stat		action	I	CASR Bea	am bpmC: stat	asr_2009120 ax	8_125723.dat ction
GD10X	nocal all nocal all	ed Tune	Cal	Log	15 GD10BFF Ca	al refext al refext	Tune	MCal Log	R	EF4 nocal	300q	Tune	Log
01 QF11X	nocal alle	ext <u>une</u>	Cal	Log	REF2 no	ocal good	Tune	Log	30 Q.D	2BFF cal	refext refext	_une _N	/Cal Log
0012X	nocal all	edune	Cal	Log	16 GD10AFF	al refext al refext	une	MCal Log	31 QD	2AFF cal	refext refext	- une N	/Cal Log
GD16X	nocal alle	sd Cune	Cal	Log	17 QF9BFF	al refect	une	MCal Log	R	EFS nocal	good	- une	Log
QF17X	cal all	ed [une	Cal	Log	18 SF6FF	al refect	Tune	MCal Log	SD	IODE			Log
REF1	nocal go	od ["une	1	Log	19 QF9AFF	al refext		MCal Log	SP	ASE			
CDIODE	í		- 1	Log	ODSEE CS	al refeot		MCal Log	32 SF	1FF Cal	allext		
	cal alle	sd L				al refext al refext		mear eog		cal	allext allext		
	cal alle	ext [Log		al refext	i_ <u>`une</u>	MCal Log		cal	allext allext		ncal Log
GF19X	cal all	ed iune	Cal	Log	22 GD6FF Ca	al refeot	"une	MCal Log	34 30	cal	allext	une N	(Cal Log
07 GD20X	cal ref cal ref	ext I une	Cal	Log	23 QF5BFF Ca	al refext al refext	'une	MCal Log		Cal	allext	une N	(Cal Log
GF21X	cal ref cal ref	ext une	Cal	Log	24 SFSFF Ca	al refext al refext	Tune	MCal Log	36 M	-PIP			Log
QM16FF	cal ref cal ref	extune	MCal	Log	25 GFSAFF Ca	al refext	Tune	MCal Log					Cal Log
10 QM15FF	cal ref	extune	MCal	Log	REF3 no	ocal good	Tune	Log	il —			Tune	cal cog
IN QM14FF	cal ref	ext [une	MCal	Log	26 QD48FF	al refext	Tune	MCal Log					
12 QM13FF	cal ref	ext Cune	MCal	Lon	27 SD4FF	al refect	Tune	MCal Log					
0141255	cal ref	ext Land		109	28 GD4AFF	al refext	- une	MCal Log					
IJ GMTEFF	cal ref	ext L	meal	LON		al refeot						1	Fast Kicker
14 GM11FF	cal ref	ext une	MCal	Log	Carorr Ca	al refext	Tune	MCal_Log	11				
5000			- 0- o		0 0 0 0-	~ ~ ~ (0 0	0-0-	
-5000-													
-10000-												/	
-15000-3												/	
-20000-												8	
-25000-3	0	5		10		15	20		25		30	3	15

BPM system performance

- Kick beam using correctors
 - ZH4X
 - ZH6X
- Compare
 - Optics model (R matrices)

Y. Renier

 Orbit response with BPM measurements normalised by kick strength

S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

Charge dependance

Best resolution (MFB2FF)

- Sub-micron "resolution" confirmed
 - MFB2FF at waist, so beam jitter low
 - BPM rolled
 - Beam size ~3 um
 - RMS ~ 0.5 um
 - Includes beam drift and jitter
 - Will correct for this effect this evening (see later)

S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

Proper resolution studies

- This remove 20 dB attenuators from MQMI6FF
 - QMI6FF off in nominal optics
 - Compare MQM16FF with MFB2FF
 - MFB2FF is instrumented with Zygo interferometer to measure relative displacement

S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

Online Model Check

15	nre	sented by (Glen 11th De	ec 2009
				7. 2000
10				1
			Ā	/
5			<u> </u>	/
			Į. Į	M
0		-	,≠_₹	
			¥ Ź	‡
-5			Ţ	T
10				Ĺ
15				

Dispersion Measurements and Fits

•Vertical dispersion for all ATF2 beam line is corrected within 10mm.

•Large horizontal dispersion at the end of straight line (500mm) sometimes exists.

IP Beam Scans with C Wirescaner

- After waist scan and QK1-4X skew quad scans for IP coupling minimisation, min beamsize = 1.48 +/- 0.61 um
- Close to resolution limit of carbon wirescanner (1.25um)

23

G.White, 9th ATF2 Project Meting, 14-17 December, 2009

Requirements

Goal	ATF-EXT	ATF2
I/A	Jitter < 30% of σ_y with no feedback $\gamma \varepsilon_y = (4.5 \rightarrow 3) \times 10^{-8} \text{m}$ ($\varepsilon_y = 12 \text{pm}$)	BSM (laser in higher mode) BPMs with 100nm res. at Qs Power supplies of < 10 ⁻⁵ Active mover of Final Q
II/B	Jitter < 5% of σ_y (2nm jitter at IP) with feedback	BPM with < 2nm res. at IP IP Intra-bunch feedback for ILC style beam

ATF2 proposed optics IP parameters in comparison with ILC.

params	ATF2	ILC	ATF2
Beam Energy [GeV]	1.28	250	
L* [m] (f*)	1	3.5 - 4.2	
$\gamma \varepsilon_{\rm X} \ [\text{m-rad}]$	3e-6	1e-5	1.2nm
$\gamma \varepsilon_{y} $ [m-rad]	3e-8	4e-8	12pm
β _x [mm]	4.0	21	
β _y [mm]	0.1	0.4	
η '(DDX) [rad]	0.14	0.094	
σε [%]	~ 0.1	~ 0.1	
Chromaticity W_y	$\sim 10^4$	$\sim 10^4$	~ L* /β* _y
$\sigma_x(\mu \mathrm{m})$	2.8	0.655	
$\sigma_y(\mathrm{nm})$	34	5.7	
σ_x/σ_u	82	115	

ATF2 FB system: FONT5

- 10 OUAD **Dedicated** V kicker QF11X OD10X OD12X BPM 8 K:1 K2 system: Skew OUAD beta [m] DIPOL CORR beta x beta y 2 stripline 2 OF13X kickers + 26.5 27 27.5 28 29.5 28.5 29 30 30.5 31 31.5 32 s[m] fast drive amplitiers
- 3 stripline BPMs + fast analogue front-end electronics
- 9-channel digital FB processor

Beam jitter/correlation studies

18 November 2009, Std Optics, 3 train, 151.2 ns BS (with FONT4 electronics, P1 & P2 only)

P.N. Burrows P.Burrows, 9th ATF2 Project Meting, 14-17 December, 2009

Mean position +/- RMS jitter at P2: Bunch1: 68.9 +/- 5.1 um $\sigma_y \sim 6 \mu m$ Bunch2: 59.4 +/- 4.7 um Bunch3: 46.3 +/ 5.0 um

RMS sagitta wrt train mean: 11.3 um

2010年 3月 11日 木曜日

Beam jitter/correlation studies

11 December 2009, Std Optics, 3 train, 151.2 ns BS (with FONT5 electronics - P1, P2, & P3)

Bunch-to-bunch correlations at P2:

B1/B2: 0.48

B2/B3: 0.75

B1/B3: -0.02 (non sign.)

3-BPM resolution estimates:

B1: 3.9 um, B2: 3.3 um, B3 3.4 um

P.N. Burrows P.Burrows, 9th ATF2 Project Meting, 14-17 December, 2009

Mean position +/- RMS jitter at P2: Bunch1: -91.7 +/- 18.4 um $\sigma_y \sim 6 \mu m$ Bunch2: -80.9 +/- 16.7 um Bunch3: -91.3 +/ 15.7 um

RMS sagitta wrt train mean: 6.1 um

Jitter in cavity BPMs

- Subtract reference orbit
 - S-Band BPMs clearly have some problem
 - Clear betafunction dependence on jitter
 - Typically y
 jitter less 50
 µm

S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

littor in cavity BPMs

- Subtract reference orbit
 - S-Band BPMs clearly have some problem
 - Clear betafunction dependence on jitter
 - Typically y
 jitter less 50
 µm

S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

Reference orbit

- Cut on reference amplitude and QDI0Xx position
 - Bad extracts
 - Low charge

S.Boogert, 9th ATF2 Project Meting, 14-17 December, 2009

measured by the cavity BPM, Dec. 2004, M. Ross

y1 as a function of time -Fri/Sat Dec 10_23:40-Dec 11_01:26

RMS motion ~ 3.8 μ m; dominated by residual spurious dispersion and energy jitter

70

measured by the cavity BPM, Dec. 2004, M. Ross

y1 as a function of time -Fri/Sat Dec 10_23:40-Dec 11_01:26

Vertical incoming beam motion vs time for ~1.5 hours

70

The most critical stability issue at ATF is the variation in the DR stored beam intensity on a pulseto-pulse basis. Injection beam intensity is directly related to linac energy jitter and drift. The BT orbit is affected by variation in the energy gain in the middle of the linac, which directly affects the injection angle in the septum magnet region. In addition to the energy jitter, bunching jitter also directly affects the energy spread jitter, leading to injection intensity jitter. In order to stabilize the extracted beam current, stabilization of the linac energy and bunch length is the first priority.

ATF, Accelerator Test Facility Study Report JFY 1996-1999

Operation with Large Beta Optics ($\beta *_{x/y}=8cm/1cm$), IPBSM in LW mode in Feb.-May and the interference mode in Nov.-Dec. **2009 Annual Calendar**

2010年3月11日木曜日

ATF2 internal		2009				2010													
milestones, Dec.08	dec	jan	feb	mar	apr	may		oct	vou	dec	jan	feb	mar	apr	may		oct	nov	dec
BSM Laser Wire mode commissioned					a	chi	iev	ed											
First test of fast kicker																			
Observe several micron beam size																			
BSM 8° (0.25-1.5um) commissioned																			
Observe sub micron beam size																			
BSM 2° mode (1-6um) commissioned																			
Achieve [£] y=24pm beam in DR																			
BSM 30° (70-400nm) commissioned										4									
Extract and preserve of ^E y=24pm									K		X),							
First observation of ILC-scaled σ y=75nm									C	4									
Achievement of ^{E}y < 12pm in DR											0								
Repeat observation of 75nm beam												1		1					
Extract & preserve ^E y=12pm beam													0,			1>			
BSM 174° (20-100nm) commissioned													4	0	×				
First observation of design 37nm beam															6				
Fast kicker system fully commissioned																9			
Monalisa installed on beamline																			
Reliable observation of 37nm beam																			
Achieve 2nm resolution of IP BPM																			
Evaluate IR position stability to nm level																			
Commissioning of Monalisa																			
Commissioning of FONT feedback																			
Observe of nm stability of IP position																			
Initial tests of squeezed -function																			

ATF2 Overall Schedule

year	2010	2011	2012	2013	2014	
month	1 2 3 4 5 6 7 8 9 10 11 1	2 1 2 3 4 5 6 7 8 9 10 11	12 1 2 3 4 5 6 7 8 9 10 11 12	2 1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12	
Goal A (single bunch, SB)	31	7nm				IPBSM with 30 and 174 degree
Fask Kicker		permane	ently installed			ATF2 beam commissioning
Goal B (multi-bunch, MB)						
DR/LINAC Stability	σ_{y} (SB)	$0.3 \sigma_y (SB) \qquad \sigma_y (MB)$		0.05 σ _y (MB)		
FONT						Installation around IP
IPBPM 2nm						beam test (R&D)
SC-Q						beam test and updates
Ultra low beta optics	31	7nm			20nm	
DR BPM upgrade for 1pm		10pm			lpm	
SC-Q production at BNL						_
coil (QF1, SF1)						production
magnet (cryostat)						test
						shipment
Cryogenics at KEK						design or parts

Session Organization

	14th Dec. Monday	15th Dec. Tuesday	16th Dec. Wednesday	17th Dec. Thursday
9:00		Milestones in 2009 - 2010	Future Plan 2013 - SC-Q	Re-examination of strategy for next years followed up the TB discussion
13:30	Introduction -start at 14:00 Comm. status	Milestones in 2011 - 2012	TB/SGC R&D Status Proposal update of SC-Q closed session Conclusion	Updates of commissioning status Joint w. ILC-BDS

16:30, ATF Daily operation meeting

18:00- YearEnd Party

Message on the SC-Q to ATF/ATF2 Members;

Thus, I would like to propose the following -

1. The importance, the validity, the technical contents of the project, and conformity with the ATF2 schedule are the subject of discussion for the coming TB meeting in December, 2009;

2. However, the go or no-go decision for the SC quad project is to be deferred until the ATF TB meeting next year (May, 2010 or later);. We hope you understand our situation.

Kaoru Yokoya, Head of KEK LC Office

9th December, 2009

Goals at this meeting 1. Update of "monthly" milestones by 2010

- with experiences so far and the goal of 37nm by end of 2010 **2. Detailed plan for sub-systems**
- Beam tuning procedure automatically as much as possible
- OTR system as a complementary to the wire scanners
- Stripline BPMs, S-band BPMs : monitoring the stability
- IPBPM, tilt monitor, Monalisa, straightness monitor, LW and FONT etc.
- 3. Update of the SC-Q as future plan
- Essential program for the ILC and CLIC
- Worldwide collaboration
 - SLAC, BNL, KEK, LAL, LAPP, CERN, Oxford univ. and more

"We have to have a well-structured, realistic, feasible and reasonable plan for this, not just a long to-do list."