<u>Y. Renier</u> and P. Bambade (LAL) G. White and M. Woodley (SLAC)

> 9th ATF2 Project Meeting 17 December 2009

(日)

Striplines BPMs Status of striplines BPMs

Striplines BPMs

Status of striplines BPMs

Optics modeling

- Transfer matrices check
- Injection parameter and dispersion fit + correction
- Orbit steering
- Conclusion and prospect
 Conclusion and prospect

Striplines BPMs Status of striplines BPMs

What has been done

- Electronics has been retuned.
- Polarity has been changed on backwards BPMs.
- High pass filter has been changed.
- Comparison of the calibration with and without kicker is on going.

Striplines BPMs

Status of striplines BPMs

Stripline BPM

BPM name	length	diameter	remarks
MQF1X		small	
MQD2X			
MQF3X			
MQF4X	short	big	very bad
MQD5X	1		
MQF6X		small	
MQF7X		big	
MQD8X	1		
MQF9X			
MQF13X	long	small	good (ring electronic)
MQD14X			good (ring electronic)
MQF15X			good (ring electronic)

Striplines BPMs

Status of striplines BPMs

Tuning of the electronics

- All head on circuit checked (MQF4X fixed).
- All clipping circuit checked, offsets and clipping levels retuned.
- No real improvement observed.

Striplines BPMs Status of striplines BPMs

Polarity changed

- Electronics is tuned and calibrated for a pulse negative and then positive.
- BPMs with electrodes upstream of the electrodes must invert the signal before clipping circuit.
- Made with the switch at the entrance of the clipping circuit.

Striplines BPMs Status of striplines BPMs

High pass filter and kicker noise

- Kicker noise inducted signal has been measured.
- Cut by the 15*MHz* high pass filter, most efficient just before the clipping circuit.
- However it distorts the signal badly when used with the electronics.
- Has not been installed (can be tested with future one).

Striplines BPMs Status of striplines BPMs

- Calibration measurement has been made for MQF1X, MQF4X and MQF9X.
- Done with and without the kicker.
- On going study :
 - Stability/reproducibility of the amplification.
 - Noise level function of the intensity.
 - Influence of the kicker on the calibration.

Optics modeling Transfer matrices check

Outline

Status of striplines BPMs

Optics modeling

- Transfer matrices check
- Injection parameter and dispersion fit + correction
- Orbit steering
- Conclusion and prospect
 Conclusion and prospect

Optics modeling Transfer matrices check

- Change corrector strength or displace quadrupole.
- Fit the slope of the position in all BPM function of that change.
- Compare with the expected one from magnet current settings.
- If no agreement, possibility to apply fudge factor to 1 quad to reproduce measurement.

Optics modeling

Transfer matrices check

- Lots of sign problems due to different conventions for various instrumentations.
- Identify non-calibrated BPMs.
- Now really good agreement from mid-EXT line.
- Sometimes problems at the begining of EXT line.

Optics modeling

Transfer matrices check

ZH2X R₁₂ measurement

Optics modeling

Transfer matrices check

ZV6X R_{12} measurement

Optics modeling Transfer matrices check

- Easy to use interface.
- Quick determination of modeling problems (1 corrector scan = few min).
- Quick determination of problematic BPMs.
- Possibility to test hypothesis (quad fudge factor).
- Already well tested in beam.

Optics modeling Injection parameter and dispersion fit + correction

Striplines BPMs

• Status of striplines BPMs

2 Optics modeling

- Transfer matrices check
- Injection parameter and dispersion fit + correction
- Orbit steering
- Conclusion and prospect
 Conclusion and prospect

Optics modeling Injection parameter and dispersion fit + correction

Principle and status

- $X X' Y Y' \frac{dE}{E}$ reconstruction at selected point with selected BPMs.
- Fit the dispersion from correlation in all BPMs with reconstructed energy (can be parasitic with other measurements).
- Fit the dispersion at the selected point using dispersion in selected BPMs.
- Compute correction (untested).

Optics modeling

Injection parameter and dispersion fit + correction

Experimental test

- Data taken in May and last week.
- parameters reconstruction seems good (steps in energy when Δ*f* ramp used are well reconstructed).
- Dispersion measurement reconstructed fits very well with dispersion measured in all goods BPMs.
- Dispersion measurement with beam fluctuation !
- Dispersion correction still untested.

Optics modeling

Injection parameter and dispersion fit + correction

Horizontal dispersion measurement ramp on

						_ ×
Measurement option	ons				output	
Freq. range :		save filename : 2	20091210T235006		resizing plot resizing plot done	
SPM read per step		🖌 plot after mei	asurement	Measure	dPS(QF1X)=0.056+-0.007 dPS(QF6X)=0.030+-0.009	
tot BPM read :	200	Wait to fill buffer			resizing plot done	-
oad/Display optic	ns		Fitting and Correction		Plots	
oad filename :	dispersion_10_dec_ram	Load	BPM reconstruction	BPM dispersion	Dispersion : X	
X range :	[0 89.3]	BPM reading range :	Fit point :	MQD10X	param (histo): X •	
Y range :	[-1.5.6]	[1:206]	Fit	Apply correction	Parameters evolution	
Dx=0.06	43 +-0.204 mm D×'=-68	.8 +-0.483 mrad Dy=-1.75	+-0.609 mm Dy'=-0.561 +-0	0.666 mrad		
Dx=0.06		.8 +-0.483 mrad Dy=-1.75	0.14 +3.1 mill by -0.22. +-0.609 mm Dy'=-0.561 +-(0.666 mrad		
0.5						
Dx=0.06	43 + -0.204 mm Dx + -63	38 +-0.483 mind Dy1.75				
Dx=0.06	43 +- 0.204 mm Dx -= 68	.8 +-0.483 mid Dyr-1.75				

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Optics modeling

Injection parameter and dispersion fit + correction

Vertical dispersion measurement ramp off

Aeasurement optio	ons				output	
Freq. range :		save filename :	20091210T235006		resizing plot	
3PM read per step		🗹 plot after m	easurement	Measure	dPS(QF1X)=0.027+-0.004 dPS(QF6X)=-0.002+-0.005	
tot BPM read :	200	Wait to fill buffer			resizing plot resizing plot	
oad/Display optic	ns		Fitting and Correction		Plots	
oad filename :	dispersion_10_dec_ram	Load	BPM reconstruction	BPM dispersion	Dispersion : X http://www.mail.com/	
X range :	[0 89.3]	BPM reading range :	Fit point :	MQD10X	param (histo): X -	
Y range :	[-1.5.6]	[1:201]	Fit	Apply correction	Parameters evolution	
D×=-6	.59 +-0.753 mm Dx'=-6	6.5 +–1.03 mrad Dy=–18.1	. +-2.28 mm Dy'=17.4 +-2.58	mrad		
Dx=-6		6.5 +-1.03 mrad Dy=-18.1	+-2.28 mm Dy'=17.4 +-2.58			surem
Dx=-6		6.5 +-1.03 mrad Dy=-18.1	+-2.28 mm Dy =17.4 +-2.58			surem nstruc corre
Dx=-6		6.5 +-1.03 mrad Dy=-18.1	+-2.28 mm Dy=17.4 +-2.58			surem nstruc corre ign
Dx==6		5.5 +-1.03 mrad Dy=-18.1	+-228 mm Dy-17.4 +-258			surem nstruc corre ign
Dx==6		6.5 +-1.03 mrad Dy18.1	+-2.28 mm Dy-17.4 +-2.58			surem nstruc corre

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Optics modeling

Injection parameter and dispersion fit + correction

Horizontal dispersion measurement ramp on

Measurement ontic	\n c		dispersion_measureme	iit.	output	
Freq. range :		save filename :	20091210T235006		resizing plot done dRVOSIX)==0.045+=0.006	
BPM read per step :		🖌 plot after me	easurement	Measure	dPS(QS2X)=0.047+-0.004 plotting	
tot BPM read :	200	Wait to fill buffer			dPS(QF1X)=0.056+-0.007 dPS(QF6X)=0.030+-0.009	-
Load/Display optio	ns		Fitting and Correction		Plots	
load filename :	dispersion_10_dec_ram	Load	BPM reconstruction	BPM dispersion	Dispersion : Y	
X range :	[0 89.3]	BPM reading range :	Fit point :	MQD10X	param (histo): X -	
Y range :	[-0.1 0.1]	[1:206]	Fit	Apply correction	Parameters evolution	
DX=0.06	43 +-0.204 mm Dx'=-68.	8 +-0.483 mrad Dy=-1.75	+-0.609 mm Dy'=-0.561 +-	0.666 mrad		
Dx=0.06	43 +-0.204 mm Dx'=-68.	8 +-0.483 mrad Dy=-1.75	+-0.609 mm Dy'=-0.561 +-1		┇ ┎┺┰┸╀╫┲┺┱┰───╄┰	
0.1	43 +-0.204 mm Dx'=-68.	8 +-0.483 mrad Dy=-1.75	+-0.609 mm Dy0.561 +-1			
	43 +-0.204 mm Dx'+-68.	8 +=0.483 mrad Dy=-1.75	+-0.609 mm Dy =-0.561 +-1		Resulting	
	43 +-0.204 mm Dx +-68.	8 +-0.483 mad Dy1.75				
0.05 <u>E</u> 0 -0.05 -0.05 -0.05	43 +-0.204 mm Dx'+-68.	8 +-0.483 mad Dy1.75				
0.1 0.1 0.5 0.0	43 + -0.204 mm Dx - = 68.	8 +-0.483 mad Dy1.75	+ -0.000 mm Dy -0.501 +-1 + -0.500 mm Dy -0.5			

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Optics modeling

Injection parameter and dispersion fit + correction

Vertical dispersion measurement ramp off

			dispersion measureme	at		
Measurement opti	ons		unspersion_measureme	internet in the second se	output	
Freq. range :		save filename :	20091210T235006		resizing plot done dPS(OS1X)==0.037+=0.009	
BPM read per step		🗹 plot after m	easurement	Measure	dPS(QS2X)=0.036+-0.006 plotting	
tot BPM read :	200	Wait to fill buffer			done dPS(QF1X)=0.024+-0.004 dPS(OF6X)=-0.006+-0.005	
Load/Display option	ons		Fitting and Correction		Plots	
load filename :	dispersion_10_dec_ram	Load	BPM reconstruction	BPM dispersion	Dispersion : Y	
X range :	[0 89.3]	BPM reading range :	Fit point :	MQD10X	param (histo): X	
Y range :	[1 0.1]	[1:201]	Fit	Apply correction	Parameters evolution	
	l-l-lpl	╺└╶┎┛╌╁╹╁╿┧		╵ ╻╷╻╹╹╹	╺ ┎┶┎┶╿╫┎╍╍┰╌╌┲╙┎	
0.1 0.05					the title all and title all all all all all all all all all a	
0.05 E 0 -0.05					+ mesuraned Dayage Dayage 	

のとの 川 (中) (山) (山) (山) (山)

Optics modeling Injection parameter and dispersion fit + correction

- Powerful reconstruction of parameters and incoming dispersion.
- Allows monitoring their evolution.
- Correction need to be tested.
- Kubo-san's dispersion bump need to be implemented.

Optics modeling

Orbit steering

• Status of striplines BPMs

Optics modeling

- Transfer matrices check
- Injection parameter and dispersion fit + correction
- Orbit steering
- Conclusion and prospect
 Conclusion and prospect

Optics modeling

Orbit steering

- Measure average beam orbit with cuts.
- chose the BPM, correctors, mover involved in correction.
- Compute EXT or FF line correction to a reference orbit.
- Display the estimated orbit after correction.
- Display the corrector strengths or mover change involved.
- Apply the correction and compare with the predictions.
- Allows to make the bump and display comparison between prediction and real effect.
- Allows to cancel the corrections.

Optics modeling

Orbit steering

- Tested yesterday and worked well (where modeling is good).
- Sometime fails due to incorrect setting of the correctors (need to cancel cancel correction and apply again).

Optics modeling

Orbit steering

Before EXT X correction

<ロト <回ト < 注ト < 注)

Optics modeling

Orbit steering

After EXT X correction

(日) (四) (日) (日) (日)

Optics modeling

Orbit steering

After 5 EXT X correction

<ロト <回ト < 注ト < 注)

Optics modeling

Orbit steering

After FF Y correction

<ロト <回ト < 注ト < 注)

Conclusion and prospect

Conclusion and prospect

• Status of striplines BPMs

2 Optics modeling

- Transfer matrices check
- Injection parameter and dispersion fit + correction
- Orbit steering

Conclusion and prospect

Conclusion and prospect

Conclusion and prospect

Conclusion and prospect

Conclusion

- EXT striplines are still bad despite retuning.
- Transfer matrix check tool available.
- Dispersion measurement possible even without Δ*f* ramp + injection parameter bunch/bunch.
- Orbit steering works, some iterations needed.

Conclusion and prospect

Conclusion and prospect

Prospects

- Calibration data of striplines is being analysed.
- Global fit and/or determination of the most probable fudge factor to apply for model and measurements consistency is considered.
- Improvement on vertical parameters determination has to be done.
- Need to improve orbit steering to gain robustness.

(日)