

Cryogenic System for Superconducting Final Focus Magnets (SCFFM) at ATF-2

N. KIMURA, T. TOMARU, Y. AJIMA, T. KUME, A. YAMAMOTO, K. TSUCHIYA and T. TAUCHI

OUTLINE

- Proposed cooling scheme for SCFFM for 4K Connection Box
- ✓ Vibration control
- ✓ Heat load estimation
- Set up plan for the cryostat in the ATF-2
- Proposed schedule for construction plan
- Summary

Infrastructures at ATF2

Infrastructures at ATF2

LHe supply Very limited

(supplied only by dewar, from Cryogenics Science

Center)

Cryogenics facility None

Space for Liquefier around ATF ??

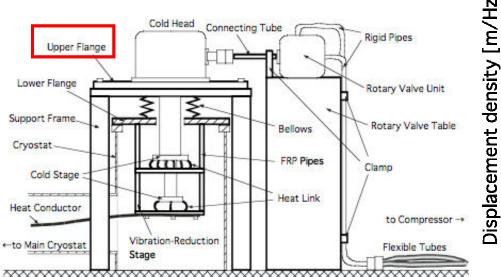
GHe recovery line Yes

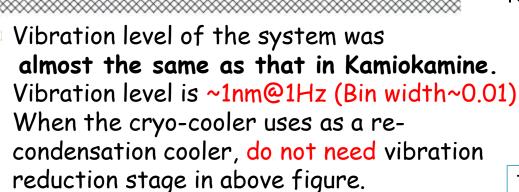
Human resource for cryogenics operation None

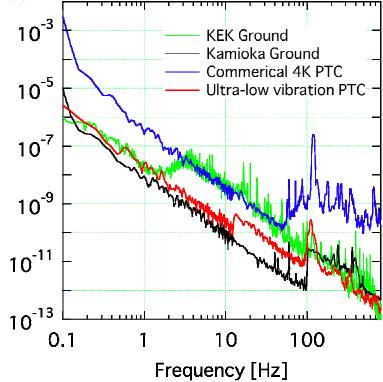
Power supplies for SC magnets None

We would like to propose our plan which can be operated under <u>limited infrastructures at ATF2</u>!! and can be consistent with BNL's magnet cooling design.

Proposed the cryogenics system at KEK


- · Cooling scheme @ ATF2
 - -We propose to construct
 - "A re-condensation cooling type" with low vibration Cryo-coolers.
 - -Vibration Control -> <u>Mixture of LCGT</u> scheme & SCGR scheme


A R&D work of low vibration cryogenics system have just started in Cryogenics Science Center as a basic research for this kind of project.


Example of Ultra-low Vibration Pulse tube cryo-cooler system at KEK

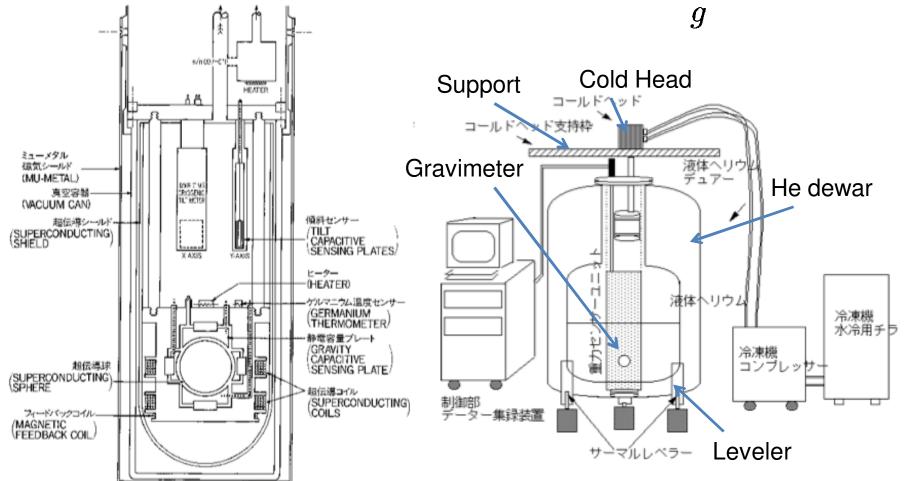
This system was originally developed for gravitational wave detector. $\sqrt{}_{10}$

Point is separated Rotary valve from cold-head.

By courtesy of Dr. T. Tomaru (KEK)

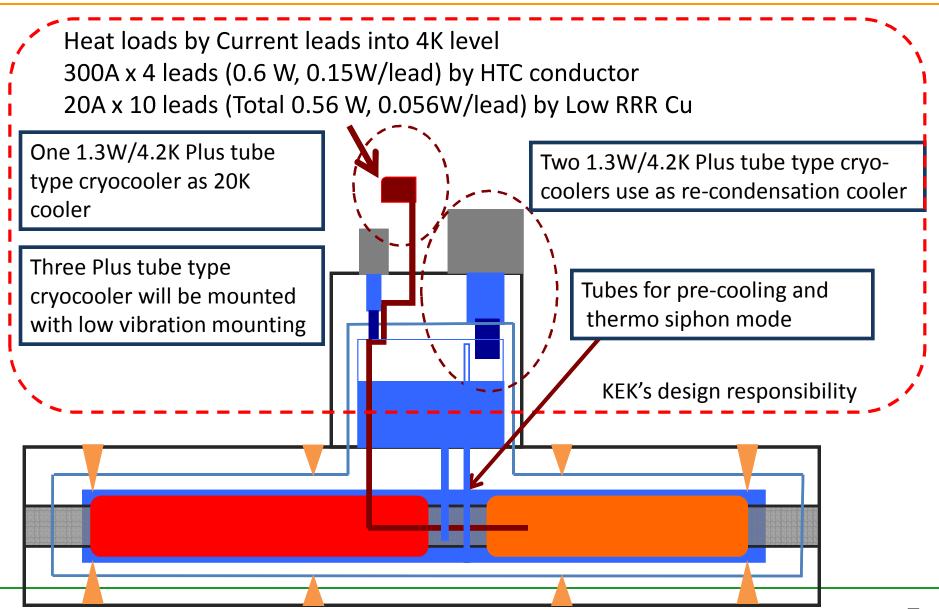
This system was presented at ICC13.

5


Example of Superconducting Gravimeter

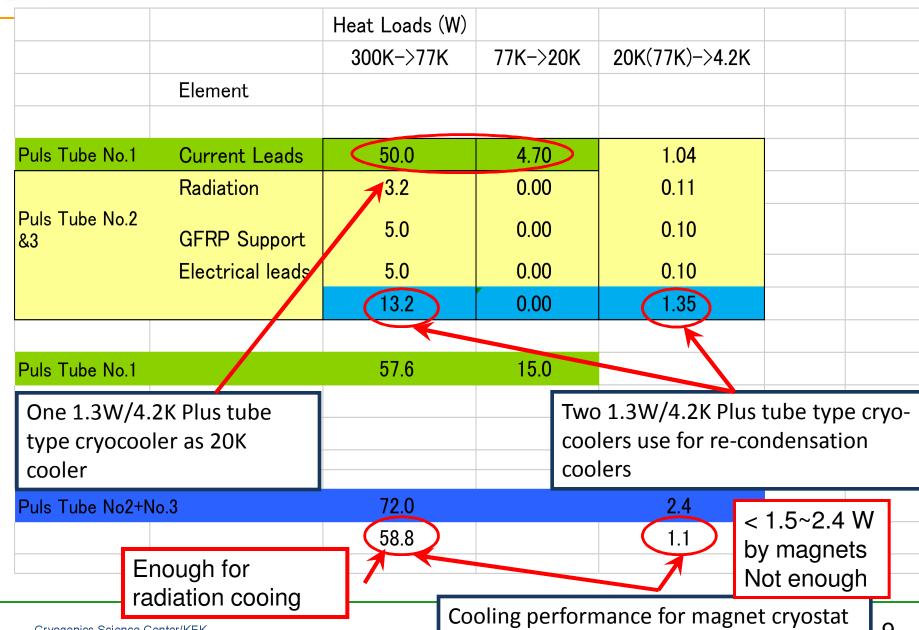
Restrain boiling type by using cooler

(Baby sitter, re-condensation, thermo siphon)


Sensitivity

$$\frac{\Delta g}{g} \approx 10^{-12}$$

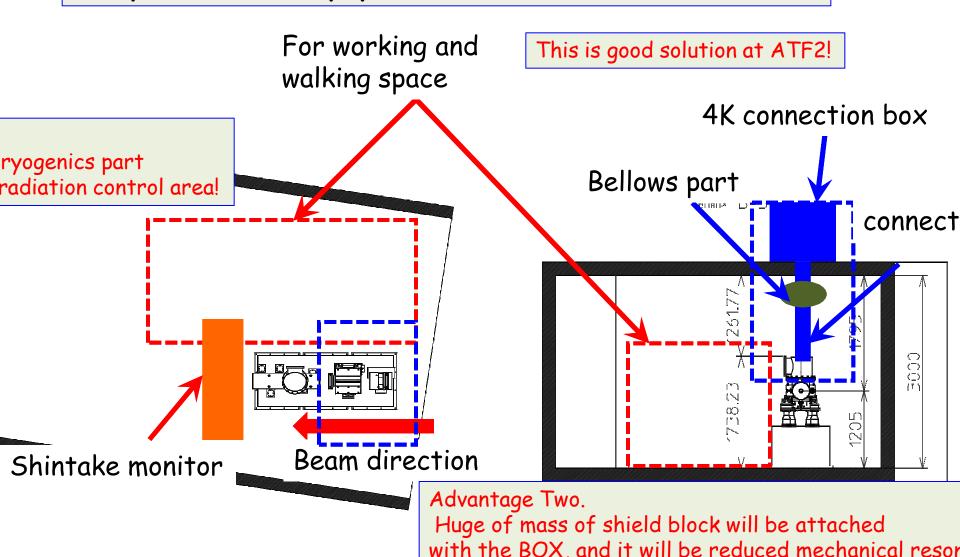
Cooling scheme for 4K connection box at ATF2



Proposed the cryogenics system at KEK

- Cooling scheme @ ATF2
 - -We propose to construct
 - "A re-condensation cooling type" with low vibration Cryo-coolers.
 - -Vibration Control -> <u>Mixture of LCGT</u> scheme & SCGR scheme
 - A R&D work of low vibration cryogenics system have just started in Cryogenics Science Center as a basic research for this kind of project.

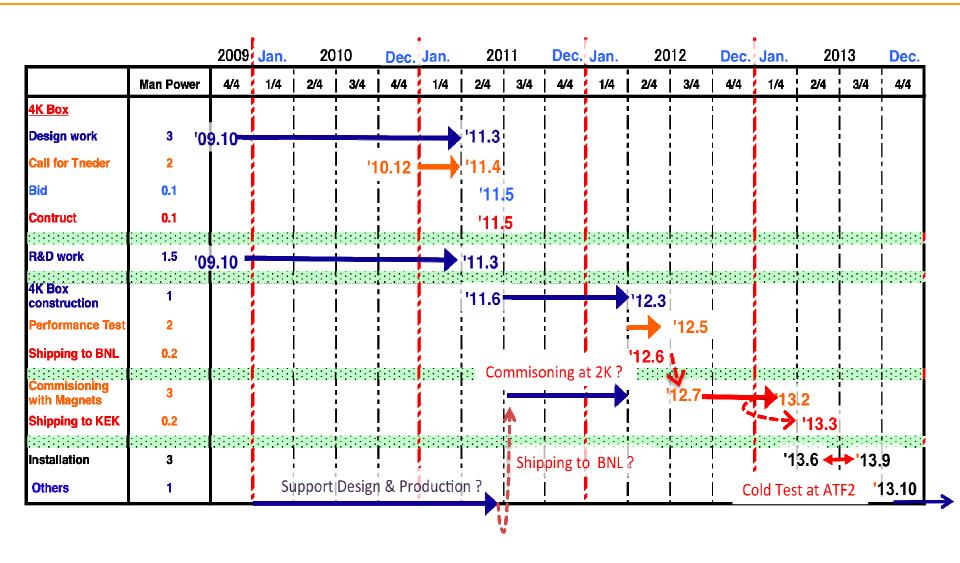
Estimated heat loads at 4K connection box


Cryogenics Science Center/KEK

OUTLINE

- Proposed cooling scheme for SCFFM for 4K
 Connection Box
- ✓ Vibration control
- ✓ Heat load estimation
- Set up plan for the cryostat in the ATF-2
- Proposed schedule for construction plan
- Summary

Proposed set up plan in the tunnel at ATF2



OUTLINE

- Proposed cooling scheme for SCFFM for 4K
 Connection Box
- √ Vibration control
- ✓ Heat load estimation
- Set up plan for the cryostat in the ATF-2
- Proposed schedule for construction plan
- Summary

Proposed Schedule (Construction & Installation)

OUTLINE

- Proposed cooling scheme for SCFFM for 4K
 Connection Box
- ✓ Vibration control
- ✓ Heat load estimation
- Set up plan for the cryostat in the ATF-2
- Proposed schedule for construction plan
- Summary

Summary

- Re-condensation cooling system @ ATF2 are proposed by KEK.
- R&D work for low vibration cryogenics have been accepted in Cryogenics Science Center as a basic research.
- For reducing vibration level lower than 50 nm, we may contribute to the low vibration cryocooler system design to be adaptable to the BNL magnet design in cooperation to the design.
- Final goal for the ready to operation in ATF-2 is the end of October 2013.

Open to Discussion

- R&D?
- Other part for Contributions?
- Support system?
- Vibration?
- Etc?

Appendix

Design work for 4K box at KEK

- Structure of Current Leads
 For B1 & B3 magnets -> HTC + L.R³.Cu lead
 For left five magnets -> hybrid conductor type
 like LHC sc-corrector magnet
- Cryo-coolers -> Plus tube cryocooler
- Cooling scheme -> Re-condensation cryogenic system

Mixture of LCGT scheme & SCGR scheme

Estimated Heat load by Current Leads-Case

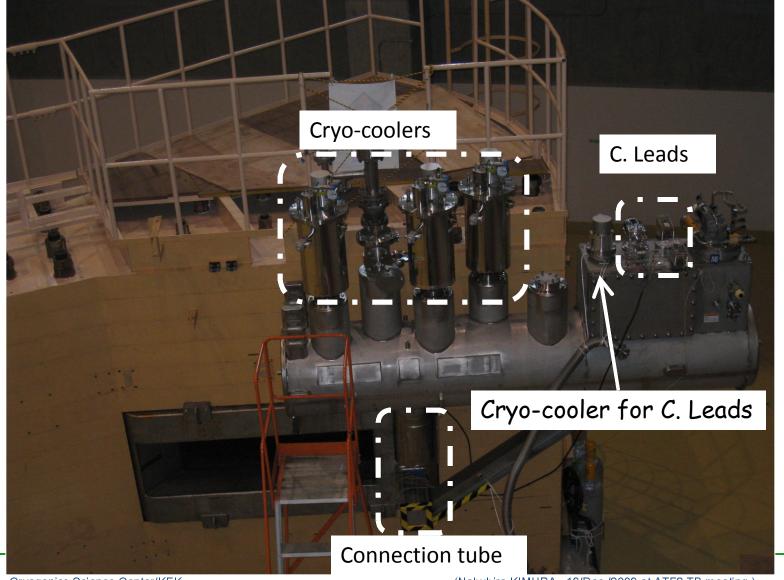
1

-			Heat Loads (W)			
					0014 \ 4.014	
			300K->77K	77K->20K	20K->4.2K	
Element	Multipole	Max. I				
Description		Scenario				
	Bn or An	(A)				
Main Quadrupole	B2	275	27.5	2.57	0.24	
Dipole Cor.	B1	20	2.0	0.19	0.12	
Skew-Dipole Cor.	A 1	20	2.0	0.19	0.12	
Main Sextupol	B3	125	12.5	1.17	0.20	
Skew-Sext. Cor.	A3	20	2.0	0.19	0.12	
Quad. Cor.	B2	20	2.0	0.19	0.12	
Skew-Quad. Cor.	A2	20	2.0	0.19	0.12	
Set-up: consists of L.R ³ . Cu & HTC		50.0	4.67	1.04		
300K->77K le	ads: Low-l	R³ Cu				
─ 77K->20K leads: Low-R³ Cu						
20K-> 4K lead						
2011 7 711 1641	us. 1110					

300K->77K calculation was based on Wiedemann-Franz law.

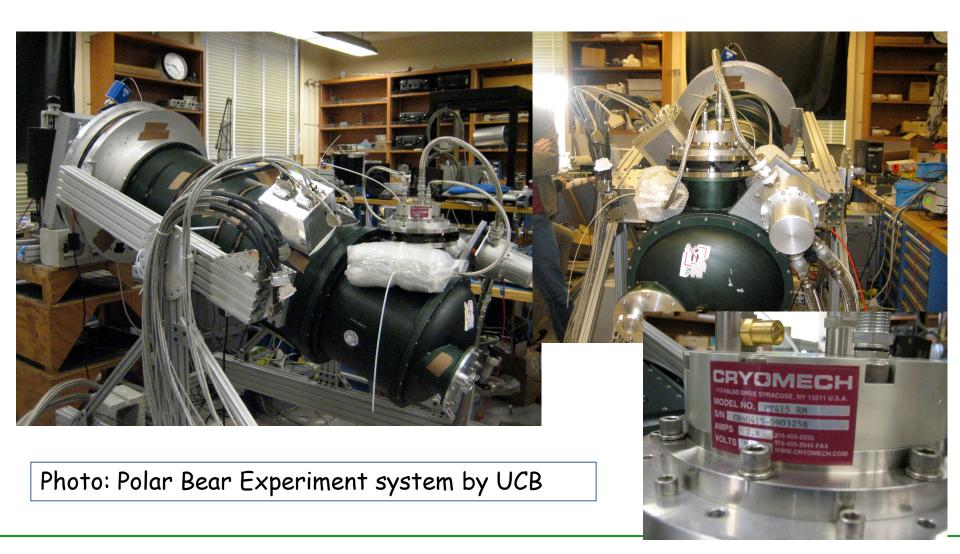
Roughly ~50W/kA

Estimated Heat load by Current Leads-Case

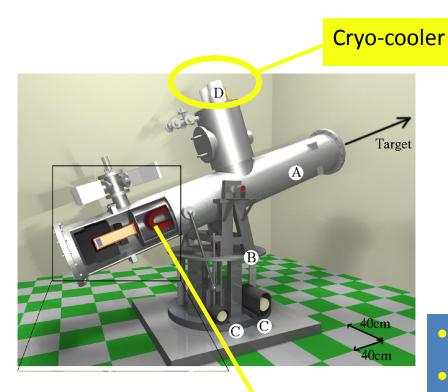

2

			Heat Loads (W)			
			300K->77K	77K->20K	20K->4K	
Element	Multipole	Max. I				
Description		Scenario				
	Bn or An	(A)				
Main Quadrupole	B2	275	27.5	2.57	0.24	
Dipole Cor.	B1	20	1.7	0.19	0.11	
Skew-Dipole Cor.	A1	20	1.7	0.19	0.11	
Main Sextupol	B3	125	12.5	1.17	0.20	
Skew-Sext. Cor.	A3	20	1.7	0.19	0.11	
Quad. Cor.	B2	20	1.7	0.19	0.11	
Skew-Quad. Cor.	A2	20	1.7	0.19	0.11	
			48.3	4.67	1.01	
Set-up: consist	ts of hybr	id Cu				

Set-up: consists of hybrid Cu 300K->77K leads: hybrid Cu 77K-> 20K leads: hybrid Cu 20K-> 4K leads: hybrid Cu (Except B1 and B3 leads)



Example of Connection Box with Cryocooler and C. Leads at SKS


Example of the cryostat with CRYOMECH PT

Superconducting Magnet for

Solar Axion Search @ ICEPP U-Tokyo

Compressor

Displacer

Valve Regenerator

- Dipole field of 10 T•m
- Cooled by using cryocoolers (2 W at 4.2 K).

Race Track Coils (5 T x 2m)