IP Intra-train FB System at ATF2

Javier Resta Lopez for the FONT group

9th ATF2 Project Meeting December 2009

Introduction: Beam-based intra-train FB systems at ATF2

• ATF-ATF2 schematic layout

Schematic intra-train FB system at IP

- To combat residual jitter at the IP
- Crucial for phase 2 goal (~ 5% $\sigma_v^* \approx 2$ nm beam stability level)

Key components:

Cavity IP-BPM (Y. Honda et al.) with nanometer level resolution: up-to-date resolution measurements ≈ 8.7 nm. Further improvement is necessary

Stripline kicker located upstream of the IP-BPM

Latency issues

- Irreducible latency:
 - Time-of-flight from kicker to BPM: $t_f \approx 3 \text{ ns}$ (if distance kicker BPM =1 m)
- Reducible latency:
 - IP-BPM signal processing: $t_p \approx 20 \text{ ns}$
 - Transport time of the signal BPM-kicker: $t_s \approx 5 ns$
 - Digital FB processor: $t_{FB} \approx 77 \text{ ns}$ (typical value from FONT4)
 - Response time of the Amplifier + kicker: $t_k \approx 38 \text{ ns}$ (typical value from FONT4)
- TOTAL latency: $t_f + t_p + t_s + t_{FB} + t_s = 143$ ns. Enough if operating trains with >~145 bunch separation !

Possibility to reduce latency with an analogue FB processor:

Response time of the Amplifier + kicker: $t_k \approx 5 ns$ (demonstrated with FONT3)

Therefore, possibility to correct trains with ILC-like bunch separation ~140 ns

Simulation Study

Bunch-to-bunch jitter tolerance

- Simulation using a PI control loop
- Considering a set of pulse offsets in the range [0,100] nm
- Scan RMS y position at the IP vs vertical position bunch-bunch jitter
- Each point is the average over 100 pulses (3 bunches per pulse)
- 2.9 12 2.8 11 2.7 10 9 RMS Δy_{IP} [nm] 2.6 8 2.5 RMS Δy_{IP} 7 2.4 6 2.3 5 2.2 2.1 $5\% \sigma_v^*$ ~ 5% o^{*}_v 2 1 1.9 0L 0 0.5 2 1.5 2 10 6 8 () bunch-bunch jitter [nm] bunch-bunch jitter [nm] Tolerable IP bunch-to-bunch jitter ~< 0.4 nm $\stackrel{R^{-1}}{\rightarrow}$ ~< 12 nm at extraction (assuming only y,y' backward propagation, no x-y coupling effects)
- IP-BPM resolution ~ 2 nm

Simulation Study

IP-BPM resolution

• Scan RMS y position at the IP vs IP-BPM resolution

Simulation Study

FD vertical jitter tolerance

 3^{rd} bunch: good correction rms y_{IP}< 5 nm for ~< 100 nm FD vertical position jitter

The IP intra-train FB system can significantly help to relax the FD jitter tolerance

Simulation study

Bunch 1: rms $y_{IP} = 19.06$ nm Bunch 2: rms $y_{IP} = 3.628$ nm Bunch 3: rms $y_{IP} = 3.414$ nm Full beam tracking considering 100 pulses with:

- Initial 40% σ_y pulse-to-pulse jitter at the entrance of the EXT line (\approx 464 nm)
- 4% σ_v bunch-to-bunch jitter

Some items to be addressed toward ~ nm beam level stabilization at the IP

- Define exact characteristics of the kicker. In principle a 10 cm stripline BPM can be used
- Define exact amplifier characteristics
- Improvement of IP-BPM resolution < 8 nm (~ 2nm will take important efforts)
- For good intra-train FB corrections with RMS y_{IP} ~ 2 nm, bunch-to-bunch jitter < 0.5 nm at the IP, which means almost perfect bunch-to-bunch correlation
- Improvement of the quality and stability of the multi-bunch trains