Status of EXT coupling measurement analysis

9th ATF2 project meeting

C.Rimbault (LAL)

S. Kuroda, T. Tauchi, N. Terunuma (KEK), G. White, M. Woodley (SLAC)

Measurement and correction of coupling in ATF2 EXT line

- Goal: provide a non-couples beam to the Final Focus of ATF
- Coupling: $\sigma_{13} \sigma_{14} \sigma_{23} \sigma_{24} \neq 0$
- →emittance growth
- 4 skew quads to correct coupling.
- Classical iterativ method: Minimisation of vertical projected emittance by successive tuning of the skew quads
- Aim: direct correction
- ➔ Need reconstruction of beam matrix at the first skew quad (QK1X).

- σ_{11} et σ_{33} directly measured
- σ_{13} measured with at angle ϕ : $\sigma_{13} = \frac{\sigma_{\phi}^2}{2\cos\phi\sin\phi} - \frac{\sigma_{11}\cos\phi}{2\sin\phi} - \frac{\sigma_{33}\sin\phi}{2\cos\phi}$

Projected emittances:

$$\varepsilon_x = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

 $\varepsilon_y = \sqrt{\sigma_{33}\sigma_{44} - \sigma_{34}^2}$

Measurement and correction of coupling in ATF2 EXT line

$$\sigma^{M} = R_{tot}\sigma^{Q}R_{tot}^{T} \qquad \sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ \sigma_{12} & \sigma_{22} & \sigma_{23} & \sigma_{24} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} & \sigma_{34} \\ \sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_{44} \end{pmatrix} \qquad R = \begin{pmatrix} R_{11} & R_{12} & 0 & 0 \\ R_{21} & R_{22} & 0 & 0 \\ 0 & 0 & R_{33} & R_{34} \\ 0 & 0 & R_{43} & R_{44} \end{pmatrix} \qquad Q_{K} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & k & 0 \\ 0 & 0 & 1 & 0 \\ k & 0 & 0 & 1 \end{pmatrix}$$

Transfer Matrix of skew quad: $R_{tot} = RQ_K$

•The squares of the measured beam sizes, $\sigma_{11}{}^{M}$, $\sigma_{13}{}^{M}$, $\sigma_{33}{}^{M}$, at each wire scanner position can be expressed as a parabolic function of the strength of the scanned quad, described by 3 fit parameters A, B, C: $\sigma_{ij}=A_{ij}(k-B_{ij})^2+C_{ij}$

$$\begin{split} \sigma_{11}^{M} &= R_{11}^{2} \sigma_{11}^{QK} + 2R_{11}R_{12}\sigma_{12}^{QK} + R_{12}^{2}\sigma_{22}^{QK} \Longrightarrow AB^{2} + C \\ &+ 2k(R_{11}R_{12}\sigma_{13}^{QK} + R_{12}^{2}\sigma_{23}^{QK}) \Longrightarrow -2AB \\ &+ k^{2}R_{12}^{2}\sigma_{33}^{QK} \Longrightarrow A \\ \sigma_{33}^{M} &= R_{33}^{2}\sigma_{33}^{QK} + 2R_{33}R_{34}\sigma_{34}^{QK} + R_{34}^{2}\sigma_{44}^{QK} \Longrightarrow AB^{2} + C \\ &+ 2k(R_{33}R_{34}\sigma_{13}^{QK} + R_{34}^{2}\sigma_{14}^{QK}) \Longrightarrow -2AB \\ &+ k^{2}R_{34}^{2}\sigma_{11}^{QK} \Longrightarrow A \\ \sigma_{13}^{M} &= R_{11}R_{33}\sigma_{13}^{QK} + R_{11}R_{34}\sigma_{14}^{QK} + R_{33}R_{12}\sigma_{23}^{QK} + R_{12}R_{34}\sigma_{24}^{QK} \Longrightarrow AB^{2} + C \\ &+ k(R_{11}R_{34}\sigma_{11}^{QK} + R_{12}R_{33}\sigma_{33}^{QK} + R_{12}R_{34}(\sigma_{12}^{QK} + \sigma_{34}^{QK})) \Longrightarrow -2AB \\ &+ k^{2}R_{12}R_{34}\sigma_{13}^{QK} \Rightarrow A \end{split}$$

Measurement of coupling in ATF2 EXT line

• Measurements of May 2009: σ_x , σ_y , $\sigma(80^\circ)$ et $\sigma(100^\circ)$ with QK1X scans (-20A,-10A,0A,10A,20A) at MW1X, MW2X, MW3X and MW4X. Problem: incoherences between measurements at 80° and 100°

→ Found 2 errors in ATF software control system (wrong correction of tilted sizes, and old configuration of MW2X)

Measurement of coupling in ATF2 EXT line

- After correction of those errors: coherence of coupling reconstruction from 80° and 100°

Measurement of coupling in ATF2 EXT line

Method for reconstruction of beam matrix parameters at QK1X -1

Reconstruction of sigma matrix at QK1X from skew scan fits & multi-wires with 80° and 100°

0

from σ_x , σ_y and $\sigma_\phi \rightarrow$ beam ellipse parameters a, b and θ

$$Tan[2\theta] = \frac{2\sigma_{\varphi}^{2} - \sigma_{x}^{2} - \sigma_{y}^{2}}{(\sigma_{x}^{2} - \sigma_{y}^{2})Sin[2\phi]} - \frac{Cos[2\phi]}{Sin[2\phi]}$$
$$a^{2} = \frac{1}{2} \left(\sigma_{x}^{2} + \sigma_{y}^{2} + \frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{Cos[2\theta]}\right)$$
$$b^{2} = \frac{1}{2} \left(\sigma_{x}^{2} + \sigma_{y}^{2} - \frac{\sigma_{x}^{2} - \sigma_{y}^{2}}{Cos[2\theta]}\right)$$

Except for MW3X at QK1X=-10A (b<0), the measurements are physical

Beam ellipse from 80° tilted size measurements

Method for reconstruction of beam matrix parameters at QK1X -2

- From fit parameters of Skew scan separately for each wire
- Successive reconstruction of $\sigma_{11}\sigma_{33}\sigma_{13} \rightarrow \sigma_{23}\sigma_{14}(\sigma_{12}+\sigma_{34}) \rightarrow \sigma_{24}$

$$\sigma_{13}^{M} = R_{11}R_{33}\sigma_{13}^{QK} + R_{11}R_{34}\sigma_{14}^{QK} + R_{33}R_{12}\sigma_{23}^{QK} + R_{12}R_{34}\sigma_{24}^{QK} \Rightarrow AB^{2} + C$$

$$+ k(R_{11}R_{34}\sigma_{11}^{QK} + R_{12}R_{33}\sigma_{33}^{QK} + R_{12}R_{34}(\sigma_{12}^{QK} + \sigma_{34}^{QK})) \Rightarrow -2AB$$

$$+ k^{2}R_{12}R_{34}\sigma_{13}^{QK} \Rightarrow A$$

Methods of reconstruction of beam matrix parameters at QK1X from MW1X MW2X MW3X MW4X and from Multiwire method

Summary

- Measurements at 80° and $100^{\circ} \rightarrow$ correction of ATF softcontrol system
- Static coherence of those measurements.
- Multiwire method lead to unphysical results (correlations>>1) (Maybe phase advance problem)
- Skew quad can not provide reliable fit of σ_{11} (hard to fit σ_{33} parabola)
- Analysis is still on-going: Cholesky decomposition, ponderation of measurements according to their errors, MC simulation...