SCRF Cavity R&D Progress and Preparation for ILC-ML Gradient Decision

A. Yamamoto, J. Kerby, R. Geng, and C.M. Ginsburg with thanks to the SCRF R&D team

7 January 2010 SCRF AAP Review **Global Design Effort**

1

- Summary of TILC09-AAP Review, for Cavity
- SCRF Cavity Status

- 'Global Database' effort
- Gradient w/ respect to the RDR and SB2009
- Current R&D Efforts
- SB2009 / Gradient Integration Topics

- NOTE: The SCRF Cavity R&D Status and plan will be the subject of a separate discussion in the GDE meeting, Beijing, March 2010 (tbc) and beyond.
 - This talk is a status report to prepare for further discussion

7 January 2010 SCRF AAP Review

7 January 2010 SCRF AAP Review

Global Design Effort

7 January 2010 SCRF AAP Review

6

A Summary of TILC09-AAP Review

The committee is very impressed by the progress made in the gradient yield toward TDP 1 goals. New final rinse techniques have significantly reduced field emission problems. There has been substantial progress in understanding some of the causes of gradient limitations by developing effective thermometry-based diagnostic tools, 2nd sound quench detection tools, and optical examination tools. Several methods of cavity repair are under exploration with already encouraging results. Companion studies are underway to understand the origin of gradient limitations. Efforts continue at all laboratories to understand and improve process reproducibility. These tools raise the prospects of continued improvement in gradient yield towards the TDP 1 goals of 50% process yield. Prospects are high for achieving good statistics with more than 90 tests available by 2010.

The path towards the TDP 2 goal of 90% cavity yield in 2012 is under development with improved understanding of defects that limit performance, especially from new vendor cavities. Not counting the large XFEL production, more than 100 cavities will be available to collect good statistics. Valuable information from quench detection and corresponding inspection will be fed back to the vendors.

The AAP recommends a strong interaction between laboratory experts and new vendors during all stages of cavity fabrication.

The AAP recommends that for the yield study further evaluation be made of the quality of cavities (Q-values) along with gradient. Electron loading and x-ray intensities at 35 MV/m should be closely monitored.

There has been substantial progress in the two major new cryomodule assembly facilities at KEK and FNAL. The first 4-cavity cryomodule has been successfully tested at KEK at an average gradient around 24 MV/m with one cavity approaching 31.5 MV/m. The slide-jack tuner variant has been successfully developed for a stiffer cavity-He vessel system and successfully tested with Lerentz force compensation at 20 MV/m. The first erromodule

SCRF

ILC Gradient R&D – Global Progress

- First demonstration of 33 MV/m in, production-like, 9-cell cavity processing and testing at ANL/FNAL & KEK in CY09 Q4
 - Following DESY and JLab's successes
 - Global competence in ALL regions emerging
- Cavities (9-cell) manufactured by US industry exceeds 35 MV/m
 - 3 out of 5 AES 2nd production cavities 36-41 MV/m
 - Close information feedback between lab and industry
 - Following successes in European industry (ACCEL/RI & ZANON)
- Global cavity result database
 - First-pass yield 26% & second-pass yield 44% at 35 MV/m
 - July report was 22% and 33%, respectively.
 - ~ ~60 9-cell cavities expected in TDP-1
- Improved understanding of gradient limits (more at Beijing GDE meeting)

FY09 Results from JLab/FNAL

7 January 2010 SCRF AAP Review

IL

Improved Understanding in Quench Limit

- Routine monitoring: 9-cell T-mapping and optical inspection
 - 9-cell T-mapping being commissioned by LANL
 - New 9 cell thermometry system in development at FNAL
 - New insights from pre-cursor heating studies at JLab
 - First predictive defect study at DESY
 - Cornell 2nd sound sensors, Cornell-OST's, will be available for labs for quench detections
 - Many labs use "Kyoto/KEK camera" (JLab just received a loan unit)
- New finding: many 9-cell is quench limited at 20-25 MV/m by only one defect in one cell with other superior cells already reaching 30-40 MV/m
 - There may or may not be observable flaw in quench site
 - This seems to suggest we need to address material aspect besides processing and fabrication in TDP-2
 - This also suggests some local repairing is needed for efficient raise of 2nd pass gradient yield

Eacc_{max}(cell) by Pass-bands modes Meas.

Reported by E. Kako (KEK), 0ct. 2009.

Global Plan for SCRF R&D

Year	07	2008	3	2009	20	010	2011	2012		
Phase		Т	DP-	1		TDP-2				
Cavity Gradient in v. test to reach 35 MV/m		$\rightarrow \underline{F}$ Yie	Proc Id 5	<u>ess</u> 0%		→ Production Yield 90%				
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Globa asser (DESY,	al efi nbly ^{FNAL,}	iort for and te	ng					
System Test with beam acceleration		I	FLAS	,NN ,exte	/IL (FNAL) end beyond 2012)					
Preparation for Industrialization	Production Technology R&D						ology			

Global Database Effort

- Following the Spring '09 Reviews, the need to establish a global database was noted
 - Common data sample, well defined data cuts
 - Easily reproducible plots
 - Data entry rules for reliable and reproducible results
 - Well defined data fields
 - No private/sensitive vendor data
 - Regular updates at predetermined times
- As part of the S0 effort, a database team was established, and led by
 - C.M. Ginsburg (FNAL) and including
 - S. Aderhold (DESY), Z. Conway (Cornell), R. Geng (S0 leader, Jlab), and K. Yamamoto (KEK) was established
- A 6 month timeline for implementation was developed
- DESY management agreed to provide support

ic Cavities in the current dataset

- 27.Oct.2009 Excel spreadsheet contains data from all three regions, from the last few years
 - KEK [5 cavities]: [MHI005:MHI009]
 - JLab, Cornell, Fermilab [18 cavities]: [A5: A9], [TB9ACC010:TB9ACC015], [AES001:AES004], [TB9AES005:TB9AES006], JLAB-2
 - DESY [53 cavities]: [AC112:AC129], [Z130:Z145], [AC146:150]
 (Production batches 5, 6, &7 are represented) and
 [Z88,Z93,Z97,Z98,Z100:Z104,Z106:Z110] (Production 4)
- 11.Dec.2009 update
 - Updates from all three regions
 - Americas [+4 cavities]: TB9AES008,TB9AES009,TB9AES010, TB9ACC016 1st pass

ic Production Yield Plot - Method

- Database version 11.Dec.2009
- Cuts
 - Cavity from vendors who have manufactured a cavity that has surpassed 35MV/m in vertical test:
 - ACCEL or ZANON or (AES SN>=5)
 - Fine-grain cavity
 - Use the first successful (= no system problem/limitation) test
 - Standard EP processing: no BCP, no experimental processes
 - Defined as JLab#1, DESY#2 (weld tank before test), DESY #4 (weld tank after test)
 - Ethanol rinse and 120C bake required for DESY cavities
 - (Ignore test limitation)
- Also known as "first-pass"
- Include binomial errors

"Up-to-second-pass" Production Yield Plot - Method

- Database version 11.Dec.2009
- Cuts
 - Cavity from vendors who have manufactured a cavity that has surpassed 35MV/m in vertical test:
 - ACCEL or ZANON or (AES SN>=5)
 - Fine-grain cavity
 - Use the first successful (= no system problem) test
 - Standard EP processing: no BCP, no experimental processes
 - Defined as JLab#1, DESY#2 (weld tank before test), DESY #4 (weld tank after test)
 - (Ignore test limitation)

Second pass

- if (Eacc(1st successful test)<35 MV/m) then
 - if (2nd successful test exists) then
 - » plot 2nd test gradient
 - else
 - » plot nothing [assume 2nd test didn't happen yet]
 - endif
- else
 - plot 1st successful test gradient
- endif
- Include binomial errors

Database Snapshot

Acknowledge DESY support

🕹 ILC Cavity DB - Mozilla Firefox																
<u>File Edit View History Bookmarks Tools Help</u>																
< 🕑 🔀 http://tesla.desy.de/oracle/lic/DataBase/view 🏠 - 🖸 Google									P 8	a 🔁						
Most Visited 🔧 Google 🗲 SPIRES 💠 FNAL Phone 🕮 CDF Online Home Page 🕕 CMG CDF Webpage 📄 CMG TD Webpage 🕕 CDF at Work 📄 IB1 elog																
Google Side wiki : 🖏 : 🗘 Bookmarks: 🍄 Check : 🗿 Translate : 🔧 AutoLink : 🧏 AutoFill : 🖉 : 🎧 Sign in : 🌧 🛶																
										LE						
CW-Test Results					1000000000			n na	00000000000			annanna	*********			
🎋 🔽 🄽 Marked: 5									Default	Statistics (3)	User-de	ined Statisti	cs (3)	Print	Qui
Cavities 💽			Cavity	Information						RF Test I	nformation					
-□ Z139 -□ Z140 -□ Z141 -□ Z143 -□ Z144		Cavity	0wner	Vendor	Arrival Date	Test No.	Last Surface Treatment	Removed Mater. [mu-m]	Last HT before Test	Test Date	Test Location	Max. Eacc [MV/m]	Qo @ Max. Eacc	Limitation	Eacc @ (100W/9)*cell#	Included
└□ Z145	18	AC115	DESY	ACCEL/RI	24.Apr.08	1	DESY#2	204	DESY-800C	11.Dec.07	DESY	38.6	1.1E+10	FE/quench		Yes
⊖ Sermilab						2	DESY#2	253		01.Oct.08	DESY	36.9	1.3E+10	FE/quench		Yes
		Z143	DESY	ZANON	03.Jan.08	1	DESY#2	163	DESY-800C	09.Oct.08	DESY	32.6	8.1E+09	FE/quench		Yes
				<u> </u>		2	HPR only	263		12.Nov.08	DESY	41.0	1.1E+10	FE/quench		Yes
		A9	Fermilab	ACCEL/RI	29.Jan.07	1	Cornell#1	220	JLab-600C	15.Aug.07	Cornell	26.0	7.0E+09	FE/quench		Yes
				<u> </u>	<u> </u>	2	Cornell#1	20		14.Sep.07	Cornell	26.0	2.0E+10	Quench		Yes
- 🗆 ACCEL7				<u> </u>	<u> </u>	3	Cornell#1	30		24.Dec.08	Cornell	<u> </u>		other (please		No
- 🗆 TB9ACC011				<u> </u>	<u> </u>	4	none		<u> </u>	03.Feb.09	Cornell	<u> </u>		other (please		No
TB9ACC012				<u> </u>	<u> </u>	5	none		<u> </u>	12.Mar.09	Cornell	26.0	6.0E+09	FE/quench		Yes
- I TB9ACC013		TB9ACC013	Fermilab	ACCEL/RI	28.Nov.07	1	JLab#1	<u> </u>	JLab-600C	01.Dec.08	JLab	41.8		<u> </u>		Yes
				<u> </u>		2	JLab#1	<u> </u>		27.Mar.09	Fermilab	38.0		FE/quench		Yes
		MHI005	KEK	MHI	29.Feb.08		KEK#1	175		U5.Dec.08	KEK	27.3	3.7E+09	FE/quench		Yes
				<u> </u>	<u> </u>	2	KEK#I	225		26.Feb.09	KEK	19.7	1.2E+10	FE/quench		Yes
				<u> </u>	<u> </u>	3	KEK#I	245		17.Apr.09	KEK	27.1	7.5E+09	FE/quench		Yes
¢-⊂амні		<u> l</u>								,				L		
∲-⊂⊒9-cell		Cavity remark:	more improv	ed in EBW pro	cedure than I	∕IHI#	1 - #4 cavities									
Image: Proceeding of the sector of the se																
Accept Accept remark:																

ΪĻ

Compare 1st and 2nd pass yields updated, Dec. 2009

7 January 2010 SCRF AAP Review

Summary of Cavity Gradient Status

- Global Database has been created
 - Consistent, reproducible plots incorporating worldwide data
- <u>Production</u>, 2nd pass yield of 44% for vendors with a cavity >35MV/m in vertical test
 - Q0 goals met by all cavities, >35MV/m--efforts will continue on this aspect as well
- Considerable number of cavity tests coming in 2010
 - Infrastructure, cavity orders in place
 - Fermilab completed 6 VTS test cycles in December
- Continued push to TDP goals, through better control of fabrication and processing
 - Better diagnostic equipment in place
- Extension of understanding to maximize machine performance economically in final design
 - Improved technical understanding and increased statistics provide basis for updating of industrialization model

SCRF Cavity Gradient in SB2009 and Preparation for ILC-ML Gradient Decision

- Re-evaluation of the <u>design accelerating gradient</u> is required during TDP-2, based on
 - Statistical cavity performance (R&D results), i.e. expected/projected yield for cost-optimized mass production
 - Required operational overhead of installed cavities in linac (under full beam loading)
- SB2009 WA-1 is to maintain the RDR value of 31.5 MV/m (Q₀ ≥ 1×10¹⁰) pending final and thorough review of R&D status
 - Determines length of main linac, in SB2009 (CFS requirements)
- Unlike RDR, propose to adopt variable power distribution for HLRF to allow for spread in accelerating gradient of individual cavities
 - Maximize average accelerating gradient (better 'yield')
 - Has impact on required RF power overhead and efficiency
 - Overall cost benefit
- Acceptable performance spread of cavities about the average still remains to be determined
 - Expect approximately ±10~ 20%

IIL

ic Alternative Yield Plot Analysis

originated by N. Walker
 Dec 2009 Data:

1st +2nd Pass, 1st pass cut 35MV/m,

vendors w/ 1 cavity > 35MV/m

Electropolished 9-cell cavities

Flattop Operation with a Spread of Cavity Gradients

reported by C. Adolphsen

The Next Battles (1): Eliminate the Yield Drop near 20MV/m

Despite increased acceptance thanks to more flexible HLRF

JLab/DESY (combined) up-to-second successful test of cavities from qualified vendors - ACCEL+ZANON+AES (25 cavities)

23

IC The Next Battle (2): Further Reduce Field Emission up to 40 MV/m

Flexible HLRF opens up possibility of some individual cavity operations up to 38 MV/m

GIODAI DESIGN ETIORI

Progress and Prospect of Cavity Gradient Yield Statistics

	PAC-09 Last/Best May 2009	FALC 1 st Pass Jul 2009	ALCPG 2nd Pass Oct 2009	Current Dec 2009	Coming Prod/Test Jun 2010	Research cavities
DESY	9 (AC) 16 (ZA)	8 (AC) 7 (ZA)	14 (AC/ZA)	10- <mark>6</mark> (Prod-4)	5	8 (large grain)
JLAB FNAL/ANL/ Cornell	8 (AC) 4 (AE) 1 (KE-LL5) 1 (JL-2)	7 (AC)	7 (AC)	5 (AE) 1 (AC)	12 (RI) 6 (AE) 2 (AC)	6 (NW) (including large-G)
KEK/IHEP /PKU			(4 -4:MH)	5 - <mark>5</mark> (MH)	2 (MH)	~5 (LL) 1 (IHEP) 2 (PKU)
Sum	39	22	21	21 -11	27	~ 22
G-Sum				42-11 = 31	69-11=58	

Statistics for Production Yield in Progress to reach ~ 60, within TDP-1. We may need to have separate statistics for 'production' and for 'research',

R&D Goals & ILC Operational Gradient

- The RDR has a gradient goal of 35MV/m such that a machine performance based on 31.5MV/m (-10%) may be achieved
- The S1 and S2 goals are both set at 31.5MV/m
- This 10% reduction was assumed (in Snowmass, 2005)
 - to include limitations due to both 'final assembly problems' and required 'machine operational overhead'
- In addition to continued efforts on cavity performance, TDP-2 gives several opportunities to further investigate and quantify the actual required value, and thus the machine design
 - FLASH
 - NML
 - STF2
 - Horizontal cavity tests

S1 Goal: Achieved at DESY/XFEL

First XFEL prototype module exceeds 31.5 MV/m average

- Module will see beam in FLASH in 2010 (av. of 30MV/m)

- Cryostat (cryomodule cold-mass) contributed by IHEP, in cooperation with INFN

İİĻ

Subject to be studied in TDP-2

Balance between R&D target values and Operational parameters
 Will be reviewed after S1 experience
 System design should require reasonable margin for the individual component and the system operation

S1 (~ Component performance) > ILC-Acc. Operational Gradient

	RDR/SB2009	Re-optimization required with cautious, systematic design				
R&D goal: S0	35 (> 90%)	35 MV/m (> 90 %) Keep it, and forward looking				
S1 (w/o beam)	31.5 in av.	need: > 31.5 in av., to be further optimized	31.5 in av.			
S2 (w/ beam acc.)	31.5 in av.	> 31.5 in av.	31.5 in av.			
ILC: operational gradient	31.5 in av.	31.5 in av. (+/- 10 ~ 20 %)	or: < 31.5 in av,, to be further optimized			

Summary

- In SB2009, ILC operational field gradient left unchanged
 - for CF&S study to enable to stay at 31 km in ML tunnel length and to be consistent with 250 GeV beam energy,
- SCRF cavity gradient R&D Goal
 - Kept to be 35 MV/m (at Q0 = 8E9) with the production yield of 90 %,
 - Global data base appreciated to continue for monitoring the progress,
- Spread of cavity gradient effective to be taken into account
 - to seek for the best cost effective cavity production and use,
 - Final acceptable range requires confirmation from RF effort,

• Re-optimization required, to decide ILC operational gradient

 to have adequate balance/redundancy between the 'R&D gradientmilestone' and the 'ILC operational gradient' including 'cryomodule operation margin' and 'HLRF/LLRF adjustability' for stable and sufficiently high 'availability' with risk mitigation.

Additional Information

7 January 2010 SCRF AAP Review

Global Design Effort

30

A Satellite Meeting at IPAC-2010

Industrialization of SCRF Cavities

Date : May 23, 2010, a full-day meeting, prior to IPAC-2010

Place: Int. Conf. Center, Kyoto, Japan

Organized by: ILC-GDE Project Managers,

Objectives and Plan:

- To discuss and exchange information on preparation for the 'ILC SCRF Cavity' industrialization between industries and laboratories,
- Industrialization plan to be reported by laboratories, and comments/advices given by industries,

Announcement sent/made to major cavity vendors, RI, Zanon, AES, Niowave, PAVAC, MHI, other SCRF industries, and ILC-SCRF institutions,

ILC-PAC: SCRF Report

Additional Report: S1-Global Progress All Components arrive in Japan, Dec. 2009

- Global effort for cryomodule test
 - INFN: Cryomodule
 - DESY: 2 cavities
 - FNAL/JLab: 2 cavities
 - KEK: 4 cavities, Cryomodule

Delivered to KEK on Dec.25, 2009

ILC-PAC: SCRF Report