
Ralf Diener Page 1 November 24th 2009

MarlinTPC

MarlinTPC - LCCD
Conditions Handling and Database

Ralf Diener

Ralf Diener Page 2 November 24th 2009

MarlinTPC Topics

● Usage of LCCD and Conditions Data

● Which Condition Data should we store?

● Design of Conditions Objects

● Database Layout
Physical and Logical

Ralf Diener Page 3 November 24th 2009

MarlinTPC Using LCCD and Conditions Data

● Use of LCCD package which is based on ConditionsDBMySQL

● Conditions can be stored in several ways, all writing and reading over
lccd::DBInterface class.

■ Simple File:

● LCIO file with one event that has a collection with the conditions data for the given time
stamp and tag

■ MySQL database:

● LCCollections of condition objects are stored in a folder structure in a MySQL database
(one kind of object per folder)

● Conditions data has a start and end time information:
usually end time is set to far future and conditions handler always chooses the newest
information (in the conditions time line)

● Information can be tagged, that's the only way to get older conditions data if you write
newer data for the same time slot

■ DBFile:

● Creates an LCIO file with the all conditions data in the folder for the given tag

● Useful when no database connection is available

● An example can be found in LCCD code under example/calomap

http://ilcsoft.desy.de/portal/software_packages/lccd/
https://savannah.cern.ch/projects/conddb-mysql/
http://ilcsoft.desy.de/lccd/current/doc/html/classlccd_1_1DBInterface.html#a14

Ralf Diener Page 4 November 24th 2009

MarlinTPC Storing Conditions in Database

● Condition Objects:

■ Derived from EVENT::LCGenericObject or
UTIL::LCFixedObject<NIintVals,NFloatVals,NDoubleVals>

● These Objects are stored in a LCCollectionVec:
lcColVec->addElement(condObj);

● Then the data can be stored in the database:

lccd::DBInterface
dbConnection("localhost:tpcconditions:tpcuser:passwd",
"/test/conditionsObjects", true) ;

dbConnection.storeCollection(runStart.timeStamp(),
farFuture.timeStamp(), lcColVec, "ConditionsName");

● For this to work you need a MySQL Server running and the user tpcuser has to
have the rights to create databases, tables and write into them
If this is given, everything is created automatically if it does not exists before

Ralf Diener Page 5 November 24th 2009

MarlinTPC Retrieving Conditions Data

● Include ConditionsProcessor in Reconstruction Chain:
<processor name="ConditionsInitialization" type="ConditionsProcessor">
<parameter name="DBCondHandler" type="StringVec">TPCPedestal /test/pedestals
HEAD</parameter>
<parameter name="DBInit" type="string">localhost:tpcconddata:tpcuser:passwd</
parameter>
</processor>

● Access via event time stamp in your processor:

■ Either by a special handler, derived from IconditionsChangeListener :
class PedestalHandler : public lccd::IConditionsChangeListener

This should be done if you have to do some calculations when the conditions have
changed. So the handler object stores the calculated/derived data and only
updates this when conditions change via conditionsChanged member function
(it registers with the ConditionsManager:
lccd::LCConditionsMgr::instance()->getHandler(ColName)
->registerChangeListener(this);)

■ Or simply from the event (the ConditionsProcessor packs it in the stream)
evt->getCollection("TPCDummyCond");

■ The you cast the elements of the LCCollectionVector back to the condition objects

●

Ralf Diener Page 6 November 24th 2009

MarlinTPC Which Condition Data

● ADCChannelMapping:
Mapping of H/W channels to GEAR pad ind.

● ChannelID

● PadID

● Type

● ChannelCorrection: Per channel calib.

● Quality flags (broken, noisy)

● Calibration factors

● Time offset

● Pedestal: Per channel

● Value

● Width

● TPCConditions: Calibr. TPC Parameters

● DriftVelocity

● Diffusion (trans/long)

● "Defocussing"

● Amplification

● GasConditions

● Pressure

● Temperature

● Flow

● OxygenContent

● WaterContent

● GasMixture

● Contents

● Fractions

● FieldSettings

● Nominal drift field

● Nominal B-Field

● Especially for GEMs:
■ GEM voltages
■ Transfer fields

● Or general voltage 1,2,..., n
See http://forum.linearcollider.org/index.php?t=msg&th=565&rid=0

http://forum.linearcollider.org/index.php?t=msg&th=565&rid=0

Ralf Diener Page 7 November 24th 2009

MarlinTPC Which Condition Data → Objects

● TimePixPixelMode

● Mode

● Status (broken/noisy)

● Read-Out Electronics

● Polarity

● Readout frequency

● Precision of electronics
(maximum ADC count)

● Specific settings for each type of read-
out (ALTRO, T2K, TDC) information?
→ specific objects per type

● WeatherConditions

● Temperature

● Humidity

● Pressure

● Unsorted

● ADC ↔ Primary Electrons

● My proposal:

■ Take this list as a basis and check if
we have everything that is needed

■ Every main item in this list will get an
object assigned

■ Implement these Objects to store
them in the database

● Already in SVN (status unknown to me)

■ GasConditions + GasMixture

■ Pedestal

■ Fieldsettings

■ Channelcorrection + Mapping

■ TPCConditions

■ WeatherConditions

■ TimePixPixelMode

See http://forum.linearcollider.org/index.php?t=msg&th=565&rid=0

http://forum.linearcollider.org/index.php?t=msg&th=565&rid=0

Ralf Diener Page 8 November 24th 2009

MarlinTPC Database Layout

● Need to decide on folder structure

■ CALICE has sorted by detector and location

■ Proposal: /lctpc/large_prototype_1/<location>/<condition>[/<module>]
Should be discussed!

● Tagging?

■ Proposal: start with 1.0 for all conditions and then increase version number by 0.1
for minor, by 1.0 for major corrections

● Physical servers and database setup

■ ConditionsDBMySQL is able to store data splitted over several database servers
Do we need this?

■ CALICE uses 2 machines:

● One is the main database, to which the Slow Control etc. writes the data

● This data is duplicated to a second machine, which can be accessed
by the users for the reconstruction

Ralf Diener Page 9 November 24th 2009

MarlinTPC Next Steps

● Remove obsolete DBEntryMaker and DBWriter classes from the repository

● Set up test database somewhere

● Review the different Condition Objects:
do they have the functionality we need and do they do what is expected?

● Implement a test setup: create dummy data and read out from database for all
condition objects and check if the values are right and it works

● Decide on a folder structure

● Set up the physical computers to host a central database
(includes backup strategies)

● Personal agenda:
Set up a wiki page with step by step guide how to use the conditions (LCCD):
set up database, avoid pitfalls and a simple example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

