CALICE Tail-Catcher Muon-Tracker(TCMT) Preliminary Test Beam Results

Kurt Francis NICADD/Northern Illinois University

For CALICE Collaboration

AHCAL MAIN MEETING DESY, Hamburg December 10, 2009

Current Analysis

- The effect of TCMT and coil on leakage was studied
- Compared resolution of a calorimeter with a system with calorimeter, coil, and post coil sampling
- Used a subset of TCMT layers, leaving a gap equivalent to ~1.8 lambda to simulate magnetic coil
- Used CALICE October 2006 CERN data

CALICE Configuration, Oct. 2006

Would like to compare Energy Resolution of : [ECAL + HCAL + n TCMT Layers] Extended to: [ECAL + HCAL + n TCMT Layers] + 1.8 λ gap + remaining layers of TCMT (or same calorimeter configuration but post magnet gap sampled)

Conditions & Cuts

- Conditions
 - Saturation correction applied to correct for non-linear nature of Silicon photomultipliers
 - No temperature correction
 - Pion beams
 - Sampling weights
 - Derived using least squares minimization procedure for the resolution
 - Five to eight weights used depending on the configuration
- Cuts
 - 0.5 MIP threshold
 - electrons rejected with Cherenkov
 - Double particle events rejected
 - Muons rejected by:
 - 1m x 1m veto counter behind TCMT
 - Energy sum cut (E of hits>10MIPs/total E < 0.02)</p>
 - pion detection efficiency of approximately 95% and a muon rejection of approximately 80%.
 - Cut based on Low end tail -> MIP

Effect of Cuts to Clean Pion Sample Full Detector

Cut Based on Number of Layers and Event Energy to Indentify Muons

Allocation of TCMT Layers

# TCMT Layers	Sim. Coil	Sim. Coil	End of coil/	
Added to Calorimeter	Thickness	Thickness	First Layer	Layers in
	(cm)	(λ)	Post-coil	Post-coil
(Thickness, λ)			Sample	Sample
0 (4.54)	29.2	1.78	10	6 (3.74)
1 (4.79)	26.0	1.59	10	6 (3.74)
2 (4.90)	34.0	2.08	11	5 <u>(3.12)</u>
3 (5.02)	32.0	1.96	11	5 (3.12)
4 (5.14)	30.0	1.83	11	5 (3.12)
5 (5.25)	28.0	1.71	11	5 (3.12)
6 (5.37)	26.0	1.59	11	5 (3.12)
7 (5.49)	34.0	2.08	12	4 (2.49)
8 (5.60)	32.0	1.96	12	4 (2.49)
9 (5.72)	30.0	1.83	12	4 (2.49)
10 (6.34)	30.0	1.83	13	3 (1.87)
11 (6.96)	30.0	1.83	14	2 (1.25)
12 (7.59)	30.0	1.83	15	1 (0.62)

Minimization of Weights

Resolution was minimized such that:

$$\chi^2 = (E_{beam} - \sum_{i=1}^N \alpha_i E_i)^2$$

A unique set of weights was determined for each configuration.

	coil						TCMT	TCMT	TCMT
3429 9.29 .025		ECAL	ECAL	ECAL	HCAL	HCAL	Thin	Thick	post-
	Config.	1	2	3	1	2	XCAL	XCAL	coil
	0	0.0089	0.0091	0.0133	0.0335	0.0811	0.0000	0.0000	0.2057
	1	0.0090	0.0091	0.0132	0.0334	0.0655	0.1604	0.0000	0.1810
	2	0.0089	0.0091	0.0132	0.0334	0.0631	0.1088	0.0000	0.2521
	3	0.0089	0.0091	0.0132	0.0334	0.0622	0.0809	0.0000	0.2421
	4	0.0089	0.0091	0.0132	0.0334	0.0615	0.0709	0.0000	0.2369
	5	0.0088	0.0091	0.0132	0.0333	0.0616	0.0624	0.0000	0.2306
	6	0.0088	0.0091	0.0132	0.0333	0.0613	0.0575	0.0000	0.2238
	7	0.0088	0.0091	0.0132	0.0332	0.0615	0.0547	0.0000	0.2981
	8	0.0088	0.0091	0.0132	0.0331	0.0613	0.0516	0.0000	0.2903
	9	0.0090	0.0092	0.0134	0.0335	0.0628	0.0466	0.0000	0.1070
	10	0.0089	0.0091	0.0133	0.0331	0.0613	0.0428	0.0980	0.2993
	11	0.0089	0.0091	0.0133	0.0332	0.0614	0.0410	0.1042	0.3242
	12	0.0089	0.0091	0.0133	0.0333	0.0616	0.0409	0.1021	0.4918

Energy Spectrum without and with TCMT

Energy resolution calculated with Eres = statistical RMS/statistical Mean This is necessary to take into account the low end tail

Energy Spectrum With Coil and Post Coil Sampling

10

Energy Resolution as a Function of Calorimeter Depth

Energy Resolution 20GeV π-

Red Triangles: Calorimeter Blue Squares: Calorimeter+coil+post coil sample

Improvement in Energy Resolution as a Function of Beam Energy

* Δ Eres= [Eres(w/coil) – Eres(cal. only)] / Eres(cal. only)

Monte Carlo Muons - 6Gev

Plan to switch to a cut derived from studying distribution of muons from in flight decay of pions in Monte Carlo runs (with truth information). This is going slow because of technical difficulties. 13

Summary

- Detector performed well
- Analysis is underway and progressing
- Post coil sampling improves resolution for coil position from 4.5 to 6 λ .
- At a depth of 5.5λ (the design thickness of the SID calorimeter), a tail-catcher improves energy resolution by about 6% for 20 GeV pions and 10% for 80 GeV pions.
- Studying new methods to reject muons

Additional Slides

Red: No muon cuts RMS=97 MEAN=281 RESOLUTION=0.34 Blue: After Frac-10 and Counter RMS=91 MEAN=289 RESOLUTION=0.32 Black: After Ratio cut and Counter RMS=88 MEAN=298 RESOLUTION=0.30

Red: No muon cuts RMS=149 MEAN=568 RESOLUTION=0.26 Blue: After Frac-10 and Counter RMS=134 MEAN=578 RESOLUTION=0.23 Black: After Ratio cut and Counter RMS=117 MEAN=588 RESOLUTION=0.20

