

Update on the AHCAL Calibrations

Nils Feege On Behalf of the Calibration Task Force

HCAL Main Meeting, DESY, 10 December 2009

Outline

MIP Calibration 2007
 + Temperature Correction

- Gain Calibration 2007
 + Temperature Correction
- Saturation Correction

MIP: Measuring Coefficients

- established method: χ^2 fit
- new approach: maximum likelihood fit
- \rightarrow more stable
- \rightarrow handling of empty bins
- \rightarrow only low statistics required
 - (results for each muon run)

example: merging 5 runs

Nils Feege - University of Hamburg

MIP: Comparing χ^2 And Likelihood Fit

- same data used for both fit methods
- 99.4 % correlation
- shift: results from likelihood fit 3% larger than from χ^2 fit

MIP: Temperature Dependence

Different methods to determine dA^{MIP} / dT:

- 1) use average $1 / A^{MIP} dA^{MIP} / dT = -3.8 \%/K (at 27 °C)$
- 2) linear fit for each channel (χ^2 approach): need set of mip runs for each point, only few points

MIP: Temperature Dependence

Different methods to determine dA^{MIP} / dT :

3) planar fit for each channel (include different HV, likelihood approach): one measurement point per muon run

MIP: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of mip constants and mip slopes:

1) χ^2 fit, 1 / A^{MIP} dA^{MIP} / dT = -3.8 %/K for all channels

- 2) χ^2 fit, linear fit for each channel
- 3) likelihood fit, planar fit for each channel
- excluded: all cells for which any calibration coefficient is missing in any set (FilterBadChannels processor)

MIP: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of mip constants and mip slopes:

1) χ^2 fit, 1 / A^{MIP} dA^{MIP} / dT = -3.8 %/K for all channels

- 2) χ^2 fit, linear fit for each channel
- 3) likelihood fit, planar fit for each channel
- excluded: all cells for which any calibration coefficient is missing in any set (FilterBadChannels processor)

MIP: Compare Calibration Sets

• # channels, for which mip constant and mip slope are available:

1) χ^2 fit, 1 / A^{MIP} dA^{MIP} / dT = -3.8 %/K for all channels \rightarrow 7474

2) χ^2 fit, linear fit for each channel \rightarrow 7470

3) likelihood fit, planar fit for each channel \rightarrow 7028

calibration for reconstruction: set 1)

Gain Temperature Dependence

Different methods to determine dG / dT:

- 1) use average 1 / G dG / dT = -1.7 %/K (at 27 °C)
- 2) linear fit for each channel \rightarrow need cleanup of data set:
 - Step 1: all gain measurements G_i with $\sigma_i/G_i > 1\% \rightarrow bad$
 - Step 2: do linear fit
 - calculate χ^2 for each data point
 - largest χ^2 && $\chi^2 > 9 \rightarrow bad$
 - repeat this step until no bad measurement found

Gain: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of gain constants and gain slopes:
 - 1) 1/G dG/dT = -1.7 %/K for all channels
 - 2) linear fit for each channel

Gain: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of gain constants and gain slopes:
 - 1) 1/G dG/dT = -1.7 %/K for all channels
 - 2) linear fit for each channel

Gain: Compare Calibration Sets

- # channels, for which gain constant and gain slope are available:
 - 1) 1 / G dG / dT = -1.7 %/K for all channels \rightarrow 7339
 - 2) linear fit for each channel
- lightyield at 27 °C:

 \rightarrow 5901

• calibration for reconstruction: set 1)

Saturation: Latest Developments

- treatment of raw ITEP curves (force initial slope = 1):
 - old procedure:
 - remove 1st point at (0,0)
 - fit line to 1st 3 points
 - scale linear scale by slope
 - new procedure:
 - remove 1st point at (0,0)
 - fit function to 1st 10 points: $f(x) = a \cdot \left(1 \exp\left(\frac{-b}{a}(x-c)\right)\right)$
 - shift linear scale by c
 - scale linear scale by b
- new software implementation (currently only in CVS, calice_pro_test uses old)

Saturation: A New Parametrisation

• assume two pixel types (use sum of two exponentials)

• Parametrisation:
$$A_{SiPM} = A_{max} \cdot \left(r_1 \cdot \left(1 - \exp\left(\frac{-A_{lin} \cdot s_1}{r_1 \cdot A_{max}}\right) \right) + r_2 \cdot \left(1 - \exp\left(\frac{-A_{lin} \cdot s_2}{r_2 \cdot A_{max}}\right) \right) \right)$$

- $1 = r_1 + r_2$ • $s_2 = \frac{1 - r_1 \cdot s_1}{1 - s_1}$
- \rightarrow fit works good for > 95% of channels, the others need to be checked

Saturation: Effects of Changes

CERN 2007, 15 GeV positrons

- old saturation correction:
 - latest calice_pro_test software implementation
 - old treatment of raw ITEP curves (linear fit)
- new saturation correction:
 - new software implementation (CVS only)
 - use parametrised saturation curves

Conclusions

The calibration for the 'official' reconstruction:

- **MIP**: $1 / A^{MIP} dA^{MIP} / dT = -3.8 \%/K$ for all channels
 - constants: /cd_calice/Hcal/mip_constants (ahc_mip_constants_002)
 - slopes: /cd_calice/Hcal/mip_slope (ahc_mip_slopes_002)
- Gain: 1 / G dG / dT = -1.7 %/K for all channels
 - constants: /cd_calice/Hcal/gain_constants (ahc_gain_constants_002)
 - slopes: /cd_calice/Hcal/gain_slopes (ahc_gain_slopes_002)
- Intercalibration:
 - constants: /cd_calice/Hcal/ic_constants (ahc_ic_constants_002)
- Saturation Correction: new implementation and parametrisation of raw curves
 - /cd_calice/Ahc/ResponseCurve

(ahc_response_curve_002)

Next Steps

- improve validation procedure
- validate calibration for FNAL
- saturation curves: investigate individual rescaling factors for each cell
- continue studies of temperature correction