

9mA meeting

John Carwardine 29 October, 2009

Agenda

- 9mA workshop
- Data analysis
- DAQ refresher / online database

First announcement: Workshop on TTF/FLASH 9mA studies

- Discuss results and lessons from the Sept 9mA studies, consolidate what was learnt, and plan future studies.
- Will address both ILC and XFEL/FLASH interests
- At DESY, tentatively two days in February (Feb 22/23?)

Proposed topics / sessions

- FLASH operations and Technical System reports
- Results / data analysis
- Working Groups on major 'lessons-learnt' themes (conveners?)
- Planning for machine studies
 - Continuation of 9mA studies: R&D for ILC, FLASH/XFEL
 - Operation of FLASH with long bunch trains

Data analysis - critical

- It is critical that we capitalize on the Sept studies
 - and that we do so before memories fade
- Operationally, we must build on what was done for the next time (repeatability, rapid machine tuning)
 - Make efficient use of future studies time
- Bring measurable and visible benefit to FLASH operations (BAC, DESY Mgmt)
 - A pre-requisite for proposing future 9mA studies
- Show progress towards ILC R&D goals
- Milestone dates
 - 9mA Workshop
 - Studies proposal submissions for Spring '10

Analysis of Sept studies data

- How to organize and who will do the analyses…?
- Several categories
 - Machine tuning
 - Orbits, LLRF, beam stability, sensitivities, parameter stability,...
 - Diagnostics
 - bpms, energy server, new dump-line diagnostics,...
 - Machine protection
 - Beam loss alarm thresholds
 - Feedback & automation
 - Adaptive FF, orbit feedback, injector stabilization
 - ILC R&D
 - Operation at the limits (stability, jitter, beam loading, cavity gradient, RF power)

Focus of analyses: FLASH operations

- What can we learn from the data that will help speed up machine tuning with long bunch trains and high beam loading?
- What consumed the most time in Sept...?
 - Injector tune-up
 - Finding the golden orbit (orbits?)
 - LLRF tuning
 - (Commissioning, troubleshooting,...)
- Need to quantify the 'good' conditions we'd need to reproduce
- Stability of key parameters, sensitivity to jitter, drift, etc
- Optics, energy measurements,...
- Multi-bunch effects over long bunch trains LOLA measurements indicate beam breakup over the bunch train

Focus for ILC R&D analyses:

Primary objectives of the "9mA" study

- Long-pulse high beam loading (9mA) demonstration
 - 800μs pulse with 2400 bunches (3MHz), 3nC per bunch
 - Cavity gradients approaching quench limits
 - Beam energy 700-1000MeV
 - Vector Sum control of up to 24 cavities, ±0.1% energy stability
- Characterize operational limits
 - Energy stability limitations
 - Klystron overhead needed for LLRF control
 - HOM absorber studies (cryo-load)
- Operation close to limits, eg
 - Robust automation of tuning, etc
 - Quench detection/recovery, exception handling
 - Beam-based adjustments/optimization
- Mainly parasitic measurements in Sept but valuable information
- Use the data to guide proposals for future (targeted) studies