Jan. 27, '10

Vibration Studies at KEK

KEK H. Yamaoka

Calculation results

Vibration measurements

Introduction

If the FCAL weight is supported at close to the constraint position of the tube, the deformation of the QD0 position must be small even though deformation of FACL support position is big.

- Support tube consists of double square tube.
- Outer tube supports FCAL.
- Inner tube supports QD0.

Integrated amplitudes in case of double tube

Other results

(A) Change tube size(B=500mm, 50mm-thick) Outer tube: 850x850 Outer tube: 1000x1000

(B) Thickness is changed

Deformation	Resonant freq.
850x850	850x850
1.2mm@Outer tube	15Hz@Outer tube
0.6mm@Inner tube	28Hz@Inner tube
<u>1000x1000</u>	<u>1000x1000</u>
1.1mm@Outer tube	16Hz@Outer tube
0.4mm@Inner tube	30Hz@Inner tube
	Integrated amp.
	850x850(Cern-H)
	92nm@Outer tube
	38nm@Inner tube
	1000x1000
	72nm@Outor tubo

There is no big difference.

32nm@Inner tube

Investigation of consistency between the calculations and measurements

LION LS10C Servo accelerometer 0.3V=1m/s² DC~40Hz <10⁻⁵m/s²

Are those values same?

Measurement results

P.S.D.(m²/Hz)

Ist mode of resonant frequency is ~16Hz.
 Amplitude at top position is ~200nm.

Calculation results

0.3kg

→ - 1st mode of resonant frequency is ~6Hz lower than the measurement.

Comparison PSD/Amplitude between the Calculation and Measurement

- 1st mode of resonant frequency is ~6Hz different.
 - Amplitude is ~100nm different.

Considerations

Why is the 1st mode of resonant frequency ~6Hz different?

Because:

Constraint position is not perfectly rigid. Therefore, resonant frequency is moved to frequency of *free mode* condition.

Why is the amplitude ~100nm different?

→ It is supposed that <u>actual damping ratio is smaller than the assumption.</u>
 → In ANSYS: damping ratio= 2%

Damping ratio(%)	
Ferroconcreate structure	: 5.0
Steel frame structure	: 2.0
Welding structure	: 1.0
Bolt/Rivet structure	: 2.0
Laying pipes	: 0.5 ~ 2.5
Duct for the air conditioner	: 2.5
Cable tray	: 5.0
Liquid in a tank	: 0.5
Reference: JEAG 4601-1987	

 $m\ddot{x} + c\dot{x} + kx = F\cos\omega t$ $X = \frac{\delta_{st}}{\sqrt{\left\{1 - \left(\frac{\omega}{\omega_n}\right)^2\right\}^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)}}$

lf ω/ω_n= 1 , <u>ζ=0.02</u> <u>X/δ_{st}=25</u>

lf ω/ωn= 1 , <u>ζ=0.01</u> <u>X/δ_{st}=50</u>

Vibration test

Damping ratio measurement

۴		f_1	$-f_{2}$
ς —	2>	$< f_n$	

_	11 -	
Mode	Freq.	Damping(%)
1	30.4Hz	1.68
2	188Hz	0.422
3	419Hz	0.303
4	584Hz	0.113
5	992Hz	8.02E-2

Vibration measurements at the Belle/KEKB

Study items

- Vibrations on each place

- Influence of air conditioner
- Coherency between both sides

Measure vibrations on KEKB

Influence of air conditions

Coherency between A-B, C-D. 8640

13

Measure vibrations on the Belle

Servo Accelerometer MG - 102

Acc. 0.1 ~ 400Hz Acc. 60dB = 1gal/V

14

Considerations on the measurement result

- First resonance is around ~3-4Hz.
- Amplitude on the barrel is bigger than the table.
- Amplitudes on the End-Y is getting bigger as the position of EY rise:

Large amplitudes on the Belle;

- The belle detector is not fixed on the floor.
- The barrel yoke is not fixed on the table rigidly.
- Top of the end-yoke is not fixed.

Summary

- **1. Calculations**
- Optimization of the double shaped tube has been carried out.
- Matthieu san has proposed a realistic support tube.
- Simple vibration tests have been done.
 - → Resonant frequency was measured lower than calculation.

Measured amplitude is larger than calculation.

 \rightarrow Investigation of damping ratio is necessary.

2. Vibration measurements

(Belle detector)

- First resonance is measured around ~3-4Hz.
- Amplitude on the barrel is bigger than the table.
- The integrated amplitude becomes larger when going from the bottom of the end yoke toward the top. (KEKB)
 - Tunnel: H-dir. \rightarrow ~0.3Hz (Micro-seismic), V-dir. \rightarrow ~3Hz(Resonancy of soil)
- The integrated amplitude becomes larger when going from the bottom of the component toward the top.
 Q-table, magnet → Peak around 8Hz was measured additionally.

Summary of vibratio	on						
magguramanta		Integrated amplitude(nm)					
ineasurements		>1Hz		>10Hz			
		Perpend	Beam	Vertical	Perpend	Beam	Vertical
	Barrel-Top	196	301	93	18	12	9
	EY-Top	248	354	80	25	17	20
-	EY-Mid.	204	254	121	14	27	19
	Belle stand	105	69	71	13	11	13
	B4 floor	50	46	67	4	3	9
	KEKB floor	55	45	68	10	5	9
	Magtable	90	50	76	12	16	19
	QCS-boat	250	60	118	15	21	30
_	QC1RE	241	77	112	52	50	46

 \rightarrow Amplitude can not be improved because resonant frequency is not increased.

Vibration test

Comparison with FEM

MAC(Modal Assurance Criteria)

Modal assurance criteria quantitatively compare all the possible combinations of test and analysis mode shape pairs.

MAC=1: Mode shape pairs is exactly match MAC=0: pairs that are completely independent

Damping ratio measurement

5 =	$f_1 -$	f_2
	$2 \times$	f_n

2 "n '		
Mode	Freq.	Damping(%)
1	30.4Hz	1.68
2	188Hz	0.422
3	419Hz	0.303
4	584Hz	0.113
5	992Hz	8.02E-2

Comparison of ground motion with various sites

n c

e

Reference: http://vibration.desy.de/overview/

Overview of Measured Sites (Vertical Direction, >1Hz)					
Site location	Average rms	Day rms	Night rms		
	(nm)	(nm)	(nm)		
h ALBA, Barcelona, Spain	18.8	42	9.1		
t APS, Argonne, U.S.A.	10.7	11	9.8		
Asse, Germany (salt mine)	0.6	0.7	0.5		
p BESSY, Berlin, Germany	75	140.7	53.1		
: BNL, Upton, U.S.A.	89.6	135.3	29.1		
CERN LHC, Geneva, Switzerland	1.9	2.8	0.9		
/ vDESY HERA, Hamburg, Germany	53.3	77	34.8		
DESY XFEL, Osdorf, Germany	29.1	48.4	19.5		
DESY XFEL, Schenefeld, Germany	41.1	70	35.1		
DESY, Zeuthen, Germany	64.4	75.6	88.5		
a Ellerhoop, Germany (TESLA IP)	18.2	35.9	9.3		
ESRF, Grenoble, France	74	137.2	40.2		
FNAL, Batavia, U.S.A.	3	4	2.2		
IHEP, Beijing, China	8.5	9	8.1		
KEK, Tsukuba, Japan	80.5	125.1	38		
LAPP, Annecy, France	3.6	7	1.9		
Moxa, Germany (seismic station)	0.6	0.9	0.5		
SLAC, Menlo Park, U.S.A.	4.9	7.4	4.1		
Spring-8, Harima, Japan	2	2.5	1.8		
SSRF, Shanghai, China *	292	444	102		
Reference:http://vbration.desy.de/overview/					

24