

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

1

Frank Gaede
 DESY

ILD Software Meeting
Paris, Jan 27, 2009

LCIOv2
Improving the I/O and the
Event Data Model

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

2

LCIO overview
LCIO provides a
hierarchical event data
model and a persistency
solution (I/O) for LC
software
DESY/SLAC project since 2002

C++ and Java API
also f77 (obsolete) and Python
(experimental)

used in ILD and SID SW
frameworks and in many
ILC testbeam experiments

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

3

LCIO in Marlin
LCIO provides the event
data model in Marlin:
transient==persistent
event data
software bus model
Marlin processors, eg
PandoraPFAProcessor,
LCFIVertexProcessor
programmed against LCIO

● effectively all existing LC
 software tools are programmed
 against LCIO
● need to evolve LCIO in a
 backward compatible way

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

4

LCIO features and possible improvements
LCIO provides a rather complete event data model and has
been used successfully in SID and ILD LOI mass production
and in various R&D testbeam programs
user extensions through use of LCGenericObject

no dictionary needed, i.e. anyone can read any LCIO file - but small
performance penalty

runtime extensions: attach arbitrary C++ types to any
LCObject and N-to-M relationships (not used frequently !?)
current I/O: SIO has compression one event per record
possible (and requested) improvements:

direct access to events (now only via fast skip ot TOC creation)
partial reading of events (e.g. only PandoraPFOs)
splitting of events over files (sim, rec, DST w/o dublication)
storing of (arbitrary) user classes
use LCIO with ROOT (ROOT macros, TTreeViewer, I/O,....)
improving the event data model (1d,2d hits, tracks/trajectories)

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

5

direct access to LCIO events
direct access to LCIO events
needed:
overlay of random background events
physics analysis – reading of pre-
selection
debugging

now available through fast skip
or creation of TOC (slow)

proposed extension of LCIO/SIO (T. Johnson):
add two additional records LCIORandomAccess/LCIOIndex to SIO
allows to create index of LCIO events over arbitrarily large sets of files
direct access to events – possibly w/ pre-selection criteria (E_t>50GeV)

first implementation for Java exists in exp. cvs branch – need
to test and implement in C++
Note: ROOT I/O would 'automatically' provide direct access

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

6

partial reading & splitting of events

needed for performance and cost (disk space) issues:
read only objects of interest in analysis (PandoraPFOs)
store simulation and reconstruction output in separate files

main obstacle: need pointer/reference mechanism across I/O
records and files
not available in SIO now and can't use TRefs in ROOT

need index based pointers independent of I/O, e.g.:
long64 index = HASH(collName) << 32 | collIndex

experimental C++ version exists in ROOT I/O branch for
partial reading of events (not yet file splitting)
need further testing & implementation in SIO (also Java)
need extension of LCIO::Reader interface

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

7

storing of arbitrary user classes

LCIO event data model rather complete – but also clear need
for storing user defined information
LCGenericObjects can store almost arbitrary data structures based on
ints, floats and doubles
files can be read w/o any additional code (dictionary)
small performance penalty
extensively used in LCCD (conditions data) by testbeams

occasional user request for 'natively' storing arbitrary user
classes in LCIO
possible in principle with LCIO/SIO (not documented and somewhat
'discouraged') – would come 'for free' w/ ROOT I/O

IMHO: success of LCIO is to a large extend due to the
slightly restrictive definition of the event data model i.e. the
interfaces between modules/processors

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

8

ROOT I/O for LCIO
user request to have closer link of LCIO to ROOT
use LCIO classes in ROOT macros (former GLD groups)
have fast interactive analysis with ROOT tree

investigate the optional use of ROOT I/O for LCIO
would provide 'missing features': direct access, partial reading and
splitting of events (and streaming of user classes)

created experimental branch in cvs (rio_v00-00)
create ROOT dictionary w/ help from ROOT team
implemented index based pointers for C++
needed some changes to LCIO classes: LCTCollection<T>, std::vector as
members,...
can create almost complete copies of LCIO DST in ROOT
no subcollections (pointers only) yet

streaming mode for Marlin under development

see: talks at ILD software meetings for details
still some issues to resolve (interface to Java !!)

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

9

 a ROOT dictionary for LCIO
the latest patch version of LCIO v01-12-01 allows to
optionally create a ROOT dictionary for all LCIO
classes – with this one can:
use LCIO classes in ROOT macros
write simple ROOT trees, e.g. std::vector<MCParticleImpl*>
use TTreeDraw for quick interactive analysis of LCObjects:
//---gamma conversions:

TCut isPhoton("MCParticlesSkimmed.getPDG()==22") ;

LCIO->Draw("MCParticlesSkimmed._endpoint[][0]:

 MCParticlesSkimmed._endpoint[][1]",isPhoton) ;

write complete LCIO events in one ROOT branch
see: $LCIO/examples/cpp/rootDict/README for details & help

-> we are interested in feedback from the users if
this provides already the requested features

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

10

Improving the LCIO event data model
suggested improvements to the event data model:
1D, 2D tracker hits
LCIO (Sim)TrackerHit is a 3D space point – whereas actual
measurements are either 1D (strip) or 2D (TPC) where the detector
surface (line) provides the additional geometry information

Track
the current LCIO Track class consists of pointers to all TrackerHits and
one set of (Helix) parameters to these hits
generally one wants to have multiple fits for one set of hits, e.g. at the
IP or at the face of the calorimeter – could store list of
parameterizations per Track
Trajectory could be introduced as high level convenient view to these
fits
currently not straight forward (though possible) to store kinks in LCIO

detailed proposal under development (N.Graf)
user feedback needed – also for other improvements

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

11

Summary & Outlook
currently the LCIO team is working on 'LCIOv2' to further
improve LCIO and address the following feature requests:
direct access
partial reading and splitting over files
linking LCIO closer to ROOT for analysis
improving the event data model

other improvements not shown today are also discussed:
make interfaces more consistent and more convenient to use
better define the suggested use of meta-data
provide LCIO file browser (JAS)
...

make use of the 'spare time' in 2010 until preparation for the
DBD reports in 2012 will have to start
continuos user feedback is important and welcome !

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

12

additional material

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

13

LCIO software design

event data model is strictly decoupled from persistency package
– currently SIO, but can be changed
user code only sees pure abstract interface (Reading) or LCIO
implementation classes (Writing)

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

14

LCIO – user extensions
LCIO defines the event data model and provides
the persistency for it
however users want to extend existing classes
and persist their own classes
LCGenericObject provided by LCIO:
users can store 'arbitrary' data structures in
LCGenericObject w/o writing streamer code
performance not great

LCIO runtime extensions (C++)
extension of the object with arbitrary (even
non-LCObject) classes
bidirectional relations between LCObjects

one to one
one to many
many to many

no persistency yet

Fr
an

k
Ga

ed
e,
 D

ES
Y,
 I

LD
 S

of
tw

ar
e

M
ee

ti
ng

 2
7.
01

.10

15

SIO persistency
missing so far:
splitting of events over files
direct access
user streamer code

could be implemented rather
easily, if needed

simple C++ persistency tool
developed at SLAC
provides some OO-features like
pointer chasing
user needs to write streamer
code (done in LCIO)

