Frank Gaede, DESY, ILD Software Meeting 27.01.10

LCIOV2

Improving the 1/0 and the
Event Data Model

Frank Gaede

DESY
ILD Software Meeting
Paris, Jan 27, 2009

Frank Gaede, DESY, ILD Software Meeting 27.01.10

LCIO overview

- LCIO provides a

- C++ and Java API

~used in ILD and SID SW \

hierarchical event data
model and a persistency

solution (1/0) for LC
software

I

- DESY/SLAC project since 2002 -slclo files (SI0)

SimCalorimeterHit

- also f77 (obsolete) and Python ~
(experimental) /

MCParticle [«

SimTrackerHit

ionp-~—— G

frameworks and in many

ILC testbeam experiments

Monte Carlo | | RawData

Digitization

LCIO in Marlin

LCIO provides the event

: P - rlin::mai
data model in Marlin: %ﬁ% (marlin::main \

o
3 | | v Digitization
N - transient==persistent LCEvent” —
£ event data — " Tracking
% collectidhthr——g ' _
» - Software bus model | [Clustering
S] and ~ 4
a—z Marlin processors, eg N
g PandoraPFAProcessor, PFlow ﬂ
= LCFIVertexProcessor [MyInput sic; - -
@ programmed against LCIO @UtputhCESSW
$ - effectively all existing LC S e e o J
& software tools are programmed init)
. processRunHeader(LCRunHeader* runj

é agamSt LCIO _ processEvent(LCEvent” evt)
= * need to evolve LCIO in a ::EEH LCEvent* evt)

backward compatible way - ¥

Frank Gaede, DESY, ILD Software Meeting 27.01.10

LCIO features and possible improvements

LCIO provides a rather complete event data model and has
been used successfully in SID and ILD LOI mass production
and in various R&D testbeam programs

user extensions through use of LCGenericObject

no dictionary needed, i.e. anyone can read any LCIO file - but small
performance penalty

runfime extensions: attach arbitrary C++ types to any
LCObject and N-to-M relationships (not used frequently !?)

current I/0: SIO has compression one event per record

possible (and requested) improvements:

direct access to events (now only via fast skip ot TOC creation)
partial reading of events (e.g. only PandoraPFOs)

splitting of events over files (sim, rec, DST w/o dublication)
storing of (arbitrary) user classes

use LCIO with ROOT (ROOT macros, TTreeViewer, 1/0,....)
improving the event data model (1d,2d hits, tracks/trajectories)

Frank Gaede, DESY, ILD Software Meeting 27.01.10

direct access to LCIO events

LCIORandomAccess

LCIOIndex
typically points tol0-100k
events

direct access to LCIO events T
needed:
overlay of random background events T
physics analysis - reading of pre- T
selection
debugging describes single dex
now available through fast skip Tl
or creation of TOC (slow) T i

LCIOIndex
typically points tol0-100k
events

LCIOIndex
typically points tol0-100k

describes single index

proposed extension of LCIO/SIO (T. Johnson):
add two additional records LCIORandomAccess/LCIOIndex to SIO

events

allows to create index of LCIO events over arbifrarily large sets of files

direct access to events - possibly w/ pre-selection criteria (E_t>50GeV)

first implementation for Java exists in exp. cvs branch - need

to test and implement in C++

Note: ROOT I/0O would 'automatically' provide direct access

Frank Gaede, DESY, ILD Software Meeting 27.01.10

partial reading & splitting of events

needed for performance and cost (disk space) issues:

read only objects of interest in analysis (PandoraPFOs)
store simulation and reconstruction output in separate files

main obstacle: need pointer/reference mechanism across 1/0
records and files

not available in SIO now and can't use TRefs in ROOT
need index based pointers independent of 1/0, e.g.:
long64 index = HASH(collName) << 32 | collIndex

experimental C++ version exists in ROOT I/O branch for
partial reading of events (not yet file splitting)

need further testing & implementation in SIO (also Java)
need extension of LCIO::Reader interface

Frank Gaede, DESY, ILD Software Meeting 27.01.10

storing of arbitrary user classes

LCIO event data model rather complete - but also clear need
for storing user defined information
LCGenericObjects can store almost arbitrary data structures based on
ints, floats and doubles
files can be read w/o any additional code (dictionary)
small performance penalty
extensively used in LCCD (conditions data) by testbeams
occasional user request for 'natively' storing arbitrary user
classes in LCIO

possible in principle with LCIO/SIO (not documented and somewhat
'discouraged') - would come 'for free' w/ ROOT I/0

IMHO: success of LCIO is to a large extend due to the
slightly restrictive definition of the event data model i.e. the
interfaces between modules/processors

Frank Gaede, DESY, ILD Software Meeting 27.01.10

ROOT 1/0 for LCIO

user request fo have closer link of LCIO to ROOT

use LCIO classes in ROOT macros (former GLD groups)
have fast interactive analysis with ROOT tree

investigate the optional use of ROOT I/0 for LCIO

would provide ‘missing features': direct access, partial reading and
splitting of events (and streaming of user classes)

created experimental branch in cvs (rio_v00-00)

create ROOT dictionary w/ help from ROOT team
implemented index based pointers for C++

needed some changes to LCIO classes: LCTCollection<T>, std::vector as
members,...

can create almost complete copies of LCIO DST in ROOT
no subcollections (pointers only) yet
streaming mode for Marlin under development

see: talks at ILD software meetings for details

still some issues to resolve (interface to Java !!)

Frank Gaede, DESY, ILD Software Meeting 27.01.10

a ROOT dictionary for LCIO

the latest patch version of LCIO v01-12-01 allows to
optionally create a ROOT dictionary for all LCIO
classes — with this one can:

use LCIO classes in ROOT macros
write simple ROOT trees, e.g. std::vector<MCParticleImpl*>

use TTreeDraw for quick interactive analysis of LCObjects:

//---gamma conversions:

TCut isPhoton("MCParticlesSkimmed.getPDG()==22") ;

LCIO->Draw("MCParticlesSkimmed._endpoint[][0]:
MCParticlesSkimmed._endpoint[][1]",isPhoton) ;

write complete LCIO events in one ROOT branch
see: $LCIO/examples/cpp/rootDict/README for details & help

-> we are interested in feedback from the users if
this provides already the requested features

Frank Gaede, DESY, ILD Software Meeting 27.01.10

Improving the LCIO event data model

suggested improvements fo the event data model:
1D, 2D ftfracker hits

LCIO (Sim)TrackerHit is a 3D space point - whereas actual
measurements are either 1D (strip) or 2D (TPC) where the detector
surface (line) provides the additional geometry information

Track

the current LCIO Track class consists of pointers fo all TrackerHits and
one set of (Helix) parameters to these hits

generally one wants fo have multiple fits for one set of hits, e.g. at the
IP or at the face of the calorimeter - could store list of
parameterizations per Track

Trajectory could be introduced as high level convenient view fo these
fits

currently not straight forward (though possible) to store kinks in LCIO
detailed proposal under development (N.Graf)

user feedback needed - also for other improvements 10

Frank Gaede, DESY, ILD Software Meeting 27.01.10

Summary & Outlook

currently the LCIO team is working on 'LCIOv2' fo further
improve LCIO and address the following feature requests:

direct access

partial reading and splitting over files
linking LCIO closer to ROOT for analysis
improving the event data model

other improvements not shown foday are also discussed:

make interfaces more consistent and more convenient to use
better define the suggested use of meta-data
provide LCIO file browser (JAS)

make use of the 'spare time' in 2010 until preparation for the
DBD reports in 2012 will have to start

continuos user feedback is important and welcome !

11

additional material

011022 bulyeay 240m}40S QI ‘'AS3A ‘2p209 Hupdd

12

LCIO software design

= 2irte facars
=vEN L.
—LIZved]

—eal=ankar e A
[PRI ETE T |

- abstract
event

ERITE ERTEE
IS Cite

abstract to

e

312 abe A arklarr a0 @ Govst e terirge:
3l T aS4atkran @ loay
palallaztic aMs MER) CanET LINrVES”

—raeal i

—erET I aacar, 1ot
AT I

=r agag - il

aliallaztical. .o walle ke .
s Callezbcar .. s ‘_"'--\.___
raragesans allactical. o Te.
i)
ah

IKPL -TCF el sl
in

variblury e

S L | A | = FRR |
L Song . oy oang

volarbh 2
| roabahil | il ki
im0 rminal Y= Bl

_i i il
H Tt wpl
+-l Cwr ableap 3 CORCTeE
. =tR R e, at
- d classes

e bk v oer) ot
LI T BT
+. T vk ral) Inr

Heattr larcinalaread - nroas 2T ST S g ans
Heatte lacsineg - PYTHT -1 allac et

el ellaric of i
Harrwat e actinr, ool
+=atRn b oA
= At Atk v oar] e il
= athemeste tla vl el
+alT valkaval 10w
eettceesshdacal. vl

“roand el st e

Sl

."h"\
SRR 17 wed Slwpl e — -)
el
frire 500 = 0FariHw o I

d o
Tl CRear

LU o]
oo,
o bR anHuae o
o dbloEsin E

s dblLLEs .1 . LCEsu
.
CEernilic o DL d
o] LRI I =2 KT B W TRy T 11
- 1o |
vl

GIE Sl -
AP S0 e vl
S - S0 weard?
AT LT T WIS T
& zoi3ary - S0 sear

-izli=tast Far
LAt P T THT D T

- e lardle - SI0 e A dlart
B TR TR e T ER TR
- raleester oz cwaeer SO0 actionl lar dle <=

S0 = e ader

=SS et
—=GICWAer)

coel. .ok
wrieanbaacart. 1 At
L T I I 3

L ¥ _reouds
moslean S0 slee T

e g bEe IOV _LEsell noal”
el L JIMILL L

Tl ML L
ol slenes el el GOl e e T
_edlslzriers | o2ld ze o O LCEsenlL 2l 2ne T

coogall ;o
S |mmer-ardlarz e
7
S o oEsertHE e] - :
- &= [OIMPL LCCyvarzlrg * =T o :u_EN LLISwmt
- e zosl OvERT S Coart™ - W EVEMT .LZZcm
wolE-g AtHan: ar) =77 . ,
vard—ar dieit. persistency 1 il
3l —&rdlar. . 3 . . o . "2t of
HI0EE Atk ahe 310 f@fé‘ﬁ?ﬂﬁmaﬂﬁ bt G & Drarg , © el
a1 Lag ghed At Hrovnesl G5 anl stwned 1 wnie
o 3 Hewl=eand o
verAl L Jrsgre: Ik a0 m ar
gt aty) woid et 310 "
2 rz AR nml

1
|
I
|
I
|
I
|
|
I
|
I
|

e e e N

event data model is strictly decoupled from persistency package
- currently SIO, but can be changed

Frank Gaede, DESY, ILD Software Meeting 27.01.10

user code only sees pure abstract interface (Reading) or LCIO

implementation classes (Writing) 13

Frank Gaede, DESY, ILD Software Meeting 27.01.10

LCIO - user extensions

LCIO defines the event data model and provides
the persistency for it

however users want fo extend existing classes
and persist their own classes

LCGenericObject provided by LCIO:

users can store 'arbitrary' data structures in
LCGenericObject w/o writing streamer code

performance not great
LCIO runtime extensions (C++)
extension of the object with arbitrary (even
non-LCObject) classes
bidirectional relations between LCObjects

one to one
one to many
many to many

no persistency yet

LCGenericObject

+ getDataDescription()
+ getDoubleWal()

+ getFloatval()

+ getIntWal()

+ getMNDouble()

+ getMFloat()

+ getMNInt()

+ getTypeMName()

+ id()

+ isFixedSize()

+ ~LCGenericObject()

CalibrationConstant

+ CalibrationConstant()
+ CalibrationConstant()
+ getCellID{)

+ getGain()

+ getOffset()

+ print{)

+ ~CalibrationConstant(}

14

SIO persistency

- simple C++ persistency tool *missing so far:
developed at SLAC + splitting of events over files
- provides some OO-features like * direct access
pointer chasing + user streamer code

- user needs to write streamer * could be implemented rather

code (done in LCIO) easily, if needed
/@ SIO Record \

HdrLen: . ComplLen UnclLen RecNamelen|
Record fram P
header length Oxabad caF:{ Options word compressed | uncompressed| byte length of| RecName

in bytes content length| content length| record name pad32(RecNameLen)

e.g. compresseq

(RecordIDO | RecordIDl | ParentRec
64bit - 32bit-Hash of .
Py, Parent RecNgas

- BIkO+16+ -

L e
“BlockType#BlockKey]

Frank Gaede, DESY, ILD Software Meeting 27.01.10

'new' : proposal

15

