

HARDROC2: Before production

http://omega.in2p3.fr/

Nathalie Seguin-Moreau

Orsay Micro Electronic Group associated

TOWARDS A TECHNOLOGICAL PROTOTYPE Mega

1m² scalable detector equipped and tested with cosmics and in testbeam in summer and automn 2009. 144 chips/m²

About 6000 chips necessary to equip 40 plans of 1 m³

HARDROC: HAdronic Rpc Digital ReadOut Chip

- 240 chips HARDROC1 produced in june 2007 to equip 4-chip and 24-chip RPC and Micromegas detectors
 - Package PQFP240
 - Not completely power-pulsed
- 400 chips HARDROC2 produced in june 2008 to equip 24-chip RPC and Micromegas PCBs for square meter
 - 3 thresholds (0.1-1-10 pC)
 - Power pulsed to 5-8 µW/ch
 - Package TQFP160
 - Difficult SC loading: SOLVED in HARDROC2B
- 200 HARDROC2b (medical application) in plastic package received beginning of jan 2010

Trigger efficiency measurements (HR2)

Analog and Digital crosstalk (HR2)

- No decoupling capacitors (on bias and reference voltages)
- Crosstalk ~1%
 - Well differentiated, capacitive like
 - Dominated by the input
 - No long distance crosstalk
- Coupling of discriminator to inputs through ground or substrate
 - Trigger on CH1 and look at analog signal on CH2
 - 8 mV coupling = 3 fC
- Can limit the minimum threshold (not in this case as similar to noise)
- Needs careful chip layout

POWER CONSUMPTION

HR2	ON
Vdd_pa	5.5mA
Vdd_fsbx3	12.3 mA
Vdd_d0,1,2	7.3 mA
Vddd	0.67 mA
vddd2	0.4mA
	(=0 if 40MHz OFF)
Vdd_dac	0.84 mA
Vdd_bandgap	1.2 mA
Total (noPP)	29 mA
Total with 0.5% PP	145 µA

vdd Image: state of the st

HR2:

ALL OFF	<4µA
ALL ON (default config)	17 mA
Pwr_on_d	0.93mA
Pwr_on_dac	1.025mA
Pwr_on_a alone	14.9mA

OFF= Ibias _cell switched off during interbunch

HR1:a few forgotten switches (Bandgap, some reference voltages not power pulsed)

HR2: switches added:

- 5.5 µW/ch with 0.5% duty cycle

Power On Digital:

- PowerON start/stop clocks and LVDS receiver bias current to meet power budget.
- LVDS receivers for RazChn/NoTrig and ValEvt ON during PowerOnAnalog (during bunch crossing)
- Clock is started Phases asynchronously, enabled and PowerOnInt Chip 1
 stopped synchronously (at '0')
- 2 operation modes :
 - Acquisition, Conversion → common to all managed by DAQ
 - Readout → daisy chained managed by StartReadOut and EndReadOut

Power pulsing: « Awake » time

- All decoupling capacitors removed
- PWR ON: ILC like (1ms,199ms)
- PP of the analog part:
 - Input signal synchronised on PWR ON
 - => Awake time= 8 μs

- 25 µs (slew rate limited)

<u>()mega</u>

PCB board associated to both RPC and µMegas detectors

Semi-digital electronics readout system validated in beam conditions (daisy chain, stability, efficiency, no external componant)

mega

HARDROC2: test of 400 chips

- 400 HR2 to equip 1m2 RPC and µmegas detectors
- \approx 300 chips tested this summer in ORSAY and in Lyon
- Good exercise before tests of productions (5000 chips)

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

<u> Mega</u>

LABVIEW SETUP @Rodolphe Della Negra (IPNL)

LABVIEW SETUP @Rodolphe Della Negra (IPNL)

 DC levels, power consumption, VBG, memory test, SC test with a « difficult config »

Conso before [mA] Conso before load SC 17,84537 Conso after load SC 30,28721 Test Slow Control 0	VALID DC_FSB[V] 2 DC_FSB 3,23878 DC_SS DC_SS[V] 2 DC_SS 3,23221	VALID VALID VALID V_BG 2,47070
	Trig CONFIG SLOW CONTROL DAC0:300,DAC1:1023,DAC2:1023 S5 Gain:15,FSB1 Gain:8,FSB2 Gain:8 Trigger_write0:On, Trigger_write1:Off, Trigger_write2:Off All Channel Cap. Enabled All Channel Discriminator Active	RESULT MEMORY Trig0:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55, 56,57,58,59,60,61,62,63 Trig1:Trig2:
Test memory	DAC0:1023,DAC1:200,DAC2:1023 S5 Gain:15,FS81 Gain:8,FS82 Gain:8 Trigger_write0:Off,Trigger_write1:On,Trigger_write2:Off All Channel Cap. Enabled All Channel Discriminator Active	Trig0:Trig1:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, 54,55,56,57,58,59,60,61,62,63 Trig2:
VALID	DAC0:1023,DAC1:1023,DAC2:200 SS Gain:15,FSB1 Gain:8,FSB2 Gain:8 Trigger_write0:Off,Trigger_write1:Off,Trigger_write2:On All Channel Cap. Enabled All Channel Discriminator Active	Trig0:Trig1:Trig2:0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51, 52,53,54,55,56,57,58,59,60,61,62,63

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

mega

3 DACs linearity

SCurves measurements: pedestal, 100fC, 1pC

FSB0 Gain Correction

Read back of the measurements

DATA ANALYSIS

Results of the SC test performed on 274 HR2

- Some gain configurations are sometimes difficult to load in hardroc2
 - Due to long connections between flip flops inside the chip: can be corrected with additional buffers on clk and data signals
 - necessity to increase digital vdd to 4V.
- But still, ≈50% of the chips exhibit pb with the loading of « difficult » SC config.
 - Gain=170 = 10101010 loaded 10 times, calculation of the ratio of success.
 - Anyway 90% of the chips OK for the other tests performed with various SC configs have to be loaded

mega

VBG

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

DAC0 slope

FSB0,1,2 PEDESTALS dispersion between chips

FSB0: before and after gain cor

FSB1 and 2 (pedestal subtracted)

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

<u> Mega</u>

HaRDROC status

- 240 chips HARDROC1 produced in june 2007 to equip 4-chip and 24-chip RPC and Micromegas detectors
 - Package PQFP240
 - Not completely power-pulsed
- 400 chips HARDROC2 produced in june 2008 to equip 24-chip RPC and Micromegas PCBs for square meter
 - 3 thresholds (0.1-1-10 pC)
 - Power pulsed to 5-8 μ W/ch
 - Package TQFP160
 - Difficult SC loading: SOLVED in HARDROC2B
- 200 HARDROC2b (medical application) in plastic package received beginning of jan 2010.

- Hardroc2b submitted mid June for a medical application, minor modifications
 - Pinout UNCHANGED
 - Bandgap: offset minimised
 - Read/SC selection bug corrected
 - SC control register: buffers added on the Clk
- 200 HR2b in plastic package received at the beginning of january 2010
- On going test in Lyon

mega

SC pb with HARDROC2

 Test of the SC: 64x8 Gain bits, Gain set from 0 to 255, SC config sent 10 times =>Loading success

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

mega

SC with HARDROC2b:

36 HR2b measured in Lyon: 100% success when sending the difficult SC config=10101...10, 100 times

 Vbg measurement: rms=18mV instead of 34 mV in HR2

• Pedestal of FSB0

<u> Omega</u>

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

HR2b measurements (2):

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

<u> Mnega</u>

Summary

- Analog and digital performance of HR2 validated on test bench and testbeam
- SC pb solved in HARDROC2B
- On going test of the 200 HR2b: in Lyon
- => HARDROC for prod = HARDROC2B
- Test setup with a robot to test 10000 chips (IPN Lyon)

ANNEX

<u> Mega</u>

Digital part

Analog to Digital schematics

TRIGGER and RazChn

PA+FSB schematics

Trigger path : fast shaper and DAC

- Charge injected in one channel: 100fC
 - Fsb0: Typically 2mV/fC (variable by a factor 10)
- Scurves performed by varying the DAC value (Threshold)
 - 3 integrated DACs to deliver threshold voltages
 - Residuals within $\pm 5 \text{ mV}$ / 2.2V dynamic range. INL= 0.2% (2LSB)
 - 2.1 mV/DAC Unit ie 1 fC/DAC Unit (fsb0)

CALICE/EUDET meeting, LLR Palaiseau, 14-15 jan 2010

()mega

HV sparks (ESD)

- **GRPC**: HV=8 kV, PADs= a few pF
 - High spread resistor = isolates FE inputs

mega

- Micromegas: HV=400V, Pads= a few pF
 - Small spread resistor= NO ISOLATION of the

HV sparks (ESD)

- ASIC inputs:
 - protection PADs (AMS library): robustness up to 2kV HBM (100pF)
- From T2K large µmegas, AC coupling necessary for detector > 10 cm²:
 - Maximum decoupling capacitor that can b€ integrated: ≈30pF (50µm x 600 µm) and lost of signal
 - EXTERNAL CAP=500 pF/ch to ensure protection
 - Drawbacks of a decoupling cap: Xtalk, space Cdet= nF

1 nF

30pF

1M

1m2

CALIBRATION

