Analysis of pion showers in the ECAL from CERN Oct 2007 Data

David Ward

- We study the properties of pion showers in the ECAL
- Compare with GEANT models, including new physics lists in the β -release version Geant4.9.3. β 01
- Main focus on energies ~8-20 GeV important for ILC jets and also the main problem region for modelling.
- CAN/Paper is in its editorial board (aim for LCWS10).
- But, Geant4.9.3 was released just before Christmas; some significant changes.

Summary of data and MC simulations

Reconstructed data

2007 data from CERN with v0406 reconstruction and calibrations

- Run330641 8GeV π⁻
- Run330332 10GeV π⁻
- Run330645 12GeV π⁻
- Run330328 15GeV π⁻
- Run330326 20GeV π⁻
- Run331298 30GeV n⁺
- Run331286 50GeV π⁺
- Run331324 80GeV π^+

 GEANT4 simulations Mokka version 6.8.p01.calice GEANT 4.9.3.b01 with physics lists... LHEP QGSP BERT **QGSC_BERT** QGS_BIC FTFP BERT FTF_BIC (as recommended by G4 authors) and new in GEANT4.9.3.b01 QGSC QGSC QGSC_CHIPS QGSC_FTFP_BERT FTFP BERT TRV

Calice ECAL Meeting LLR 14/01/10

Models used in Physics Lists (for π^{\pm})

- LEP (<55); HEP (>25) LHEP ٠.
- BERT (<9.9); LEP (9.5-25); QGSP (>12) ♦ QGSP_BERT
- QGSP_FTFP_BERT BERT (<8); FTFP (6-25); QGSP (>12)
- QGS_BIC BIC (<1.3); LEP (1.2-25); QGSB (>12)
- QGSC_BERT BERT (<9); QGSC (>6)
- QGSC_CHIPS **QGSC_CHIPS (** \forall energies) "energyflow i/f to CHIPS"
- QGSC QGSC **QGSC (** \forall energies) "multisoft i/f to CHIPS"
 - FTFP BERT BERT (<5); FTFP (>4)
- ✤ FTFP BERT TRV

٠.

•

*

- BERT (<8); FTFP (>6) BIC (<5); FTFB (>4) FTF BIC
- n.b. Ranges overlap to provide smooth transitions between
- models. Energies in GeV
- Prerelease lists in *italics*.

Event Selection I

- Electron/proton events reduced using signal from the Cerenkov.
- ♦ (Still Kaon contribution? And ~1% e⁺ at 30 GeV)

Event Selection II

 Muon events are distinguished from the rest by comparing the data and pure muon MC simulation, looking at distribution of energy deposited in ECAL, HCAL and TCMT.

Tuning of beam profiles

Gaussian profile 60m upstream Not perfect, but good enough?

Calice ECAL Meeting LLR 14/01/10

Data c.f. MC using QGSP_BERT

Non-interacting peak is well modelled \forall energies and physics lists - suppressed

MC underestimates ECAL energy at low E_{beam} ; overestimates it at high E_{beam}

Calice ECAL Meeting LLR 14/01/10

David Ward

7

AMBRIDGE

<E_{ECAL}> vs E_{beam} – all energies and models

Energy-weighted transverse shower profile

In order to compare many energies and physics lists, we characterise these distributions in terms of moments, or percentiles

Mean shower radius

Radius for 90% shower containment

Radius for 95% shower containment

Identify first interaction layer

Identify the first layer at which 3 out of 4 consecutive layers >10MIPs Very simple, but after extensive scanning, seems to work as well as any more sophisticated procedure.

Checks of interaction layer algorithm

3500

~70% OK within \pm 1 layer ~90% OK within \pm 2 layers Differences between physics lists < \pm 1 layer CALICE 30 GeV Data CALICE 30 GeV Data Constrained by the second secon

Features of data quite well modelled \forall energies and \forall physics lists

Calice ECAL Meeting LLR 14/01/10

Use MC truth to separate longitudinal profile into components.

Shower depth in 1.4mm equivalent layers starting at the interaction point.

Calice ECAL Meeting LLR 14/01/10

David Ward

15

Longitudinal profile @ 10 GeV

Longitudinal profile @ 20 GeV

Calice ECAL Meeting LLR 14/01/10

Longitudinal profile @ 30 GeV

Energy in layers 1-3 (nuclear fragments)

Energy in layers 5-20 (e[±] dominated)

Energy in layers 30-50 (mainly hadronic)

GEANT 4.9.3

- Main changes:
 - Significant changes in the implementation of the Fritiof model; affects all FTF-based models
 - Significant development of CHIPS model into a full treatment of all energies
- New Physics Lists of potential interest
 - CHIPS (i.e. single model doing everything)
 - QGSP_BERT_TRV modified transition energies, to reduce reliance on LHEP (Gheisha).
 - ♦ QGSP_BIC
- Physics lists QGSC_QGSC and QGSC_CHIPS are still available, but regarded as largely obsolete, replaced by CHIPS.
- Have made a few first tests, using Mokka 7.2 (hacked)
- Should we change to using the released version???

FTF models (improved ?)

Depth

G4.9.3.b01 β version GeV π^{-} 6.8.p01_FTFP_BERT others protons electrons positrons mesons CALICE Data 0^L0 Depth

Released G4.9.3 version

CHIPS models (much worse)

G4.9.3.b01 β version

Released G4.9.3 version 12 GeV π^- 7.2_QGSC_BER1 100 others protons electrons positrons mesons 80 CALICE Data 60 40 20 0 0 30 40 10 20 50 Depth 140 **30** GeV π⁺ 7.2_QGSC_BERT others 120 protons electrons 100 mesons CALICE Data 80 60 40 20 0 0 10 20 30

40

50

Depth

Outstanding worry -- non-pion background

MC probably untrustworthy, but differences in probability of interaction, and in the energy deposited. Don't really know much about the beam composition.

Background contd.

K, and especially p/pbar, may have broader showers.

Calice ECAL Meeting LLR 14/01/10

Summary

- First draft of a paper/CAN based on G4.9.3.β01 comments received from reviewers. Main outstanding issues are of presentation (too much information) rather than substance.
- We do have significant discrimination between physics lists in the ECAL. QGSC_CHIPS looks rather promising.
- Outstanding uncertainty about beam contamination from non-pions – hard to quantify.
- But have been overtaken by a new release of GEANT, with some significant differences.
 - ✤ FTF-based physics lists look quite a bit better ☺
 - ◆ CHIPS-based lists all much worse ☺ Not just the CHIPS standalone. QGSC_CHIPS also spoilt ☺
- Taking advice from G4 authors, and deciding what to do.

Calice ECAL Meeting LLR 14/01/10

Fraction <100 MIPs in ECAL

Change sampling weights

8 GeV

Calice ECAL Meeting LLR 14/01/10

12 GeV

Calice ECAL Meeting LLR 14/01/10

15 GeV

Calice ECAL Meeting LLR 14/01/10

