

DHCAL SmallRPC's TestBeam Analysis

Khaled Belkadhi

General Introduction

Data Quality Checks

Conclusion

Outline

 General Introduction Data Quality Checks -Uniformity -Stability -Systematic effects Conclusion + to do

General Introduction

Data Quality Checks

Conclusion

- Why DHCAL: high granularity, robust and cheap
- Key point = Efficiency and multiplicity study

- miniDHCAL: 4/5/6 RPC
- RPC: 4 Asics
- Asic: 64 Channels
- 2 Scintillators: Trigger
 - --> Read recorded events

General Introduction

Data Quality Checks

Conclusion

 Efficiency = Probability to find a track reconstructed on 3 layers in the 4th layer

 Method = Look for aligned hits in 3 layers (« telescope ») to study the 4th

Multiplicity = number of hits in each layer

LLR 15/01/2010

General Introduction

Data Quality Checks

Conclusion

Beam Tests

- July/August 2008: 4 Russian RPC's ;
 PS beam @ CERN → Data quality checks (all 30 good runs)
- November 2008: 4 Russian RPC's 1 Multigap RPC ; PS beam @ CERN
- June/July 2009: 4 Russian RPC's 1 Chinese RPC 1 m² RPC ; PS beam @ CERN
- August 2009: 4 Russian RPC's 2 Chinese RPC 1 m² RPC ; SPS beam @ CERN
- Totally ~ 1000 good runs,

General Introduction

Data Quality Checks

Conclusion

Detector Uniformity: – With HV=7.4 kV RUN 102

General Introduction

Data Quality Checks

Conclusion

Stability of Efficiency in time

- 3 categories of cells:
 - Efficient cells: Eff > 65%
 - Medium cells: 20% < Eff < 65%
 - Dead cells: Eff < 20%

General Introduction

Data Quality Checks

Conclusion

Efficciency vs HV

RUN 156 HV=6.8 kV

RUN 186 HV=7 kV

RUN 195 HV=7.4 kV

LLR 15/01/2010

General Introduction

Data Quality Checks

Conclusion

Stability of Multiplicity in time

General Introduction

Data Quality Checks

Conclusion

Systematical effects:

- Fish line between the two plates

Efficiency map RUN 101

LLR 15/01/2010

General Introduction

Data Quality Checks

Conclusion

Conclusion

- Data analysis confirm the stability and uniformity of the detector.
- High Efficiency with optimal parameters
- To do :
 - process all runs analysis with
 Chinese RPC's to confirm expected
 high efficiency with high rate
 - 1m² prototype analysis