Branching ratio study in ZH→qqcc/bb

ILD optimization meeting Dec. 09th. 2009 H. Ono (NDU), Y. Takubo, K. Yoshida (Tohoku)

Status of ZH study

- Higgs branching ratio measurement is one of the bench mark process in LOI analysis.
- SiD, ILD update their results from the LOI in ALCPG09.

Br(H→cc) measurement	SiD $\Delta \sigma_{Hee}$	ILD Br(H→bb)/Br(H→cc)
u uH (neutrino)	10.3 →11.6%	13.8% (Yoshida)
qqH (hadronic)	5.8 →8.8%	30% →16% (Ono)
llH (leptonic)		28% → 20.8% (Yoshida)

Discrepancy between SiD and ILD are still large in hadronic mode, now investigate this reason

SiD ZH analysis note : arXiv:0909.1052v2 [hep-ph]

ZH→qqH (hadronic mode)

• ILD and SiD analysis result has large discrepancy

Use same analysis procedure with SiD to confirm difference

Event selections (same as SiD)

Classification (E_{vis} > 170 GeV + No high P leptons(>15GeV))

- 1. # of charged track in each jet > 4
- 2. $-\log_{10}(Y_{34}) < 2.7 (3 \rightarrow 4$ Jet combination threshold of Y value)
- 3. thrust < 0.95
- 4. $|\cos\theta_{\text{thrust}}| < 0.96$
- 5. $105 < \underline{\theta}_{Hjets} < 165$
- 6. $70 < \theta_{Zjets} < 160$
- 7. 110 < M_{Hfit}< 140 GeV
- 8. 80 < M_{Zfit}< 110 GeV
- 9. Eγ<10 GeV in each jet

There is a mistake in ordering of the reduction summary table in SiD analysis note, corrected version has received and compare the reduction efficiency

Compare the reduction summary

	H → cc (qqcc)	H→cc (ono)	ZH BG (qqH)	ZH BG (ono)	SM Bkg	SM Bkg (ono)
No cuts	2869 (1931)	2914	76910 (51513)	76927	9275594683	4376090000
After classification (Evis>170&&nLeptons=0)	1837	1693	41016	38273	39398366	2410080000
(1) charged track>4 (jet)	1143	1238	30125	27925	18601753	3323060
(2) -log10(Y34) < 2.7	1101	1218	29478	27563	13921271	2635920
(3) thrust < 0.95	1047	1217	27065	27551	8737017	2584510
(4) cosθ _{thrust} < 0.96	1017	1157	26322	26258	7943851	2295690
(5) 105 < θ _{Hj} < 165 (hjet)	979	1080	26001	24334	5871237	1908300
(6) 70 < θ _{zj} < 160 (Zjet)	978	1028	25687	23195	4898312	1776150
(7) 110 < M _{Hfit} < 140 GeV	966	982	22533	22076	1917231	1209100
(8) 80 < M _{Zfit} < 110 GeV	963	982	21877	22074	1561432	1206570
(9) Eγ<10 GeV (jets)	947	515	15687	12601	967312	57047

Branching ratio of ZH->qqbb/cc study

Highest photon energy distribution

SiD ono

Loose highest photon energy cut

	H→cc (qqcc)	H→cc (ono)	ZH BG (qqH)	ZH BG (ono)	SM Bkg	SM Bkg (ono)
No cuts	2869 (1931)	2914	76910 (51513)	76927	9275594683	4376090000
After classification (Evis>170&&nLeptons=0)	1837	1693	41016	38273	39398366	2410080000
(1) charged track>4 (jet)	1143	1238	30125	27925	18601753	3323060
(2) -log10(Y34) < 2.7	1101	1218	29478	27563	13921271	2635920
(3) thrust < 0.95	1047	1217	27065	27551	8737017	2584510
(4) cosθ _{thrust} < 0.96	1017	1157	26322	26258	7943851	2295690
(5) 105 < θ _{Hj} < 165 (hjet)	979	1080	26001	24334	5871237	1908300
(6) 70 < θ _{zj} < 160 (Zjet)	978	1028	25687	23195	4898312	1776150
(7) 110 < M _{Hfit} < 140 GeV	966	982	22533	22076	1917231	1209100
(8) 80 < M _{Zfit} < 110 GeV	963	982	21877	22074	1561432	1206570
(9) Eγ< <mark>20 GeV</mark> (jets)	947	895	15687	20351	967312	1036990

Signal looks almost consistent with SiD, SiVI BG should be considered. ^{09.12.9} Branching ratio of ZH->qqbb/cc study

Template fitting and Branching ratio measurement

Branching ratio measurement

• Observable of Branching ratio is

$$Br(H \rightarrow xx)_{meas} = r_{xx} \times Br(H \rightarrow xx)_{SM} \times \frac{\sigma(ZH)_{SM}}{\sigma(ZH)_{meas}}$$

Relative branching ratio is estimated to be

$$\frac{Br(H \to c\bar{c})}{Br(H \to b\bar{b})} = \frac{r_{cc}/\varepsilon_{cc}}{r_{bb}/\varepsilon_{bb}}$$

• Efficiency $\varepsilon_{bb/cc}$ are evaluated from the BG reduction summary

- *r*_{bb/cc} are evaluated from the ratio of N^{bb/cc}/N^{ZH}
 (Ratio of H→bb/cc to ZH→qqH after all cuts)
- r_{bb} and r_{cc} are evaluated from the <u>template fitting</u>

3D template samples of b/c/bc-likenss and template fitting

Fitted results of r_{bb/cc}

Toy-MC is performed by fluctuating the data by Poisson distribution and apply the template fitting for 1000 times. Fitted $r_{bb/cc}$ is obtained from the distribution.

Measurement accuracy of branching ratio

	My original cuts	SiD cuts
∆Br(H→bb)	2.58 ± 0.06 %	2.80 ± 0.07 %
ΔBr(H→cc)	13.46 ± 0.31 %	16.61 ± 0.42 %

Relative branching ratio is calculated from the fitted parameters $r_{bb/cc}$ and the selection efficiency of $\varepsilon_{bb/cc}$ from the reduction table Efficiency is calculated after the classification value

$$\frac{Br(H \to c\bar{c})}{Br(H \to b\bar{b})} = \frac{r_{cc}/\varepsilon_{cc}}{r_{bb}/\varepsilon_{bb}}$$

$$\varepsilon_{bb}$$
=0.560 (my:0.307)
 ε_{cc} =0.529 (my:0.337)

Relative branching ratio	My original cuts	SiD cuts		
Ratio of Br(H→cc)/Br(H→bb)	0.059±0.008	0.058±0.009		
Measurement accuracy of ratio	13.70 %	16.85 %		
Preliminary result				

Dependence of template sample

There are some template sample binning dependence in error estimation. Optimize binning or consider different χ^2 minimized formula

Event selections (My original cuts)

- 1. d<100 (d value same definition as SiD)
 - 2. 200 < Evis < 270 GeV
 - 3. # of charged tracks >20
 - 4. Longitudinal momentum of Z |PI|<70 GeV
 - 5. # of PFOs (NPOs>10 in each jet)
 - 6. Y34<2.7
 - 7. thrust<0.90
 - 8. |cosθ_H| < 0.95
 - 9. Jet energy fraction (E_{jmin}/E_{jmax} >0.25)
 - 10. Momentum fraction (50<P_{jmax}<100 GeV)
 - 11. Minimum jets angle between H and Z (20< θ min<135)
 - 12. Maximum jets angle between H and Z(110< θ max<170)
 - 13. Fitted Higgs mass(105<M_H fit<135 GeV)
 - 14. Fitted Zmass(80<M_z fit<110 GeV)
 - 15. Highest photon energy(gamemax<40 GeV)

Summary

- Check discrepancy with SiD results in $ZH \rightarrow qqH$ mode
 - BG reduction becomes almost consistent with SiD
 - S/N looks worse compare to previous my cut
- Need to understand the template fitting behavior
 - Template samples binning and its error estimation
- Finalize Br(H→cc) measurement accuracy by template fitting method.