Study of Higgs Selfcouplings at ILC

Junping Tian Tsinghua University

status: full simulation $e^+ + e^- \rightarrow ZHH \rightarrow (l\bar{l})(b\bar{b})(b\bar{b}) \rightarrow 2 \text{ leptons} + 4 \text{ bjets}$

- lepton selection was done, though not optimized.
- jet cluster algrithm was done, ANLJetFinder can be used in the Mars framwork.
- flavor tagging is not done, I need suggestions from experts.

main difficulty

- currently, there are no lepton + jets collections in the reconstructed dst file. we must start from the PFO collection.
- solution used by Yoshida-san: convert the original dst file into an new dst file which includes lepton collection and new jet collection (with a complicated program from Marks).

in the fact of fast simulation, we can use some common and independent libraries to select isolated leptons, do jet clustering and b-tagging. that's what I'm trying to do...

$e^+ + e^- \to ZHH \to (l\bar{l})(b\bar{b})(b\bar{b}) \to 2$ leptons + 4 bjets

selection criteria:

read out from PFOCollection

- energy of each track > 0.05 GeV, number of tracks > 25
- total visible energy between (300,600)
- at least two isolated charged leptons (the pair nearest to Z mass is selected)
- force the other tracks to four jets (ANLJetFinder used)
- combine the four jets by minimizing

•
$$\chi^2 = \frac{(M(b,\bar{b}) - M_H)^2}{\sigma_{H_1}^2} + \frac{(M(b,\bar{b}) - M_H)^2}{\sigma_{H_2}^2} + \frac{(M(l,\bar{l}) - M_Z)^2}{\sigma_Z^2}$$

do not effect minimization

lepton selection (preliminary)

ECal and HCal informations can be read out straightforwardly for each track, then they are used for lepton identification.

P>15 GeV	e-identification	μ-identificantion	
E _{ECAL} /E _{total}	>0.6	<0.5	
Etotal/Ptrack	>0.9	<0.3	

HZ recoil mass by ILD

P>20 GeV $e^{\pm}identification^{e^{\pm}}$ μ -identificantionEECAL/Etotal>0.8<0.5</th>Etotal/Ptrack[0.8,1.2]<0.5</th>

my requirement

Etotal=EECAL+EHCAL

Elepton/GeV

currently, I can't obtain the information that if the track is a primary lepton or form jets. Here the red points only denote the tracks satisfy:

 $(p - p_{truth})^2 < 10$

jet clustering

fortunately, ANLJetFinder can be directly used in the Mars analysis

I compared the ycut obtained by ANLDurhamJetFinder and the yminus read from the jet information in the collection Durham_6Jets using bbHH sample. They are exactly same.

flavor tagging

 I don't know how to use the LCFIVTX algrithm in this case. I would like to use a jet composed of PFOs as input, but the PIDHander seems need LCCollection as input.

preliminary results and compare with fast simulation

red: full simulation blue: fast simulation

Higgs masses

red: full simulation blue: fast simulation

others...

red: full simulation blue: fast simulation

difference of Ycut is due to different ANLJetFinder: JadeE in fast simulation, Durham in full simulation

Standard Model backgrounds (preliminary)

250 fb ⁻¹ ?				not normalized!	
	llHH	tt-bar	bbbbbb&bbcsdu	bbHH&ccHH	11ffff
generated	9791	39960	39998	16000	681
pre-seletion	7014	231	4	91	112
70 <m(z)<110< td=""><td>6842</td><td>123</td><td>0</td><td>38</td><td>94</td></m(z)<110<>	6842	123	0	38	94
ycut>0.005	5770	34	0	31	59
chi2<40	4811	12	0	21	36
80 <m(h1)<140< td=""><td>4475</td><td>12</td><td>0</td><td>18</td><td>31</td></m(h1)<140<>	4475	12	0	18	31
80 <m(h2)<140< td=""><td>4134</td><td>12</td><td>0</td><td>15</td><td>30</td></m(h2)<140<>	4134	12	0	15	30
evis>400	3850	7	0	12	30

without b tagging...

next to do

- try to include b tagging
- optimize the lepton selection
- prepare more ZZZ, tt-bar backgrounds for neural-net analysis