Recent Developments in Geant4

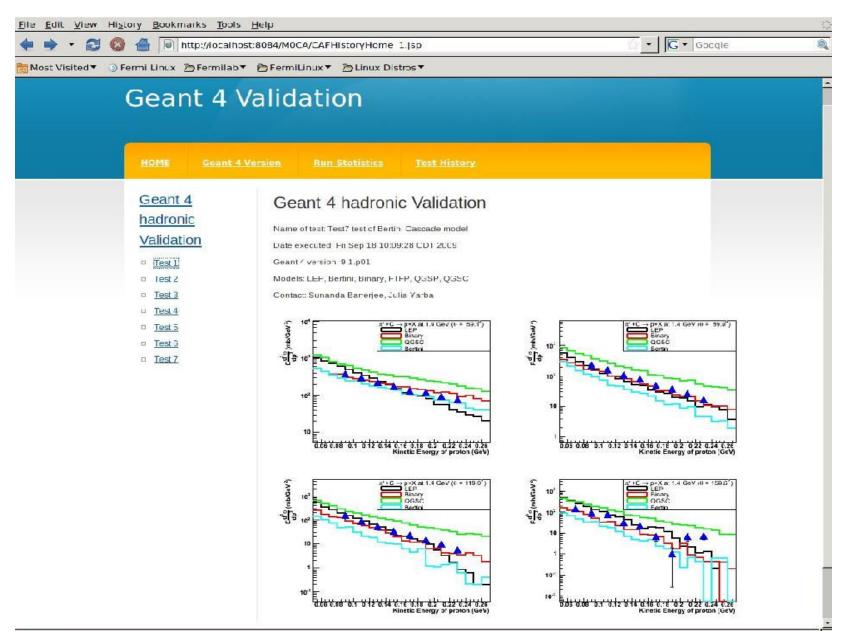
Calice Collaboration Meeting 10 March 2010 Dennis Wright (on behalf of the Geant4 hadronic working group)

Outline

- Geant4 and Calice
- Geant4 Validation
- Physics Lists and Simplified Calorimeter results
- Recent model developments
 - EM
 - -hadronic
- Plans
- Summary

Geant4 and Calice

- Geant4 philosophy
 - combine several models into physics lists which cover full range of HEP energies
 - test each model using single-particle beams on thin target measurements
 - sensitive to first interaction
 - can isolate final state multiplicity, energy, angular distribution, etc.
 - test physics list against measured shower shapes, energy deposits in calorimeters
 - indicates how showers develop

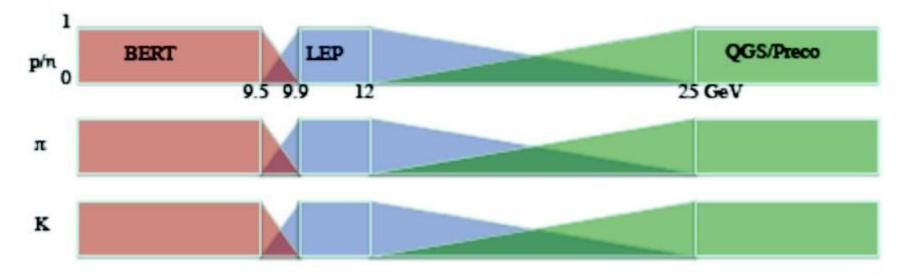

Geant4 and Calice

- Calice beam tests
 - fine grained/highly segmented calorimeters
 - sensitive to first interaction
 - provide detailed information about shower development
- Calice results provide a critical test of Geant4 physics
 - data quite well-matched to quantities required for Geant4 validation
 - feedback will guide model and physics list development
- Geant4 eagerly looking forward to Calice data

Geant4 Validation

- Validation now takes up more than half our effort
 - EM and hadronic validation suites now exist and continue to be developed/expanded
 - see validation web pages at
 - geant4.fnal.gov/hadronic_validation/validation_plots.htm
 - geant4.web.cern.ch/geant4/collaboration/working_groups/elect romagnetic/tests.shtml
 - mostly thin target validations presented
 - some full-setup and test beam comparisons (CMS, ATLAS simplified test beam detectors and calorimeters)
- Would like to collaborate on validation
 - extracting "thin-target" information
 - simplified Calice set-up to be run with each Geant4 release?

New: Geant4 Validation Framework

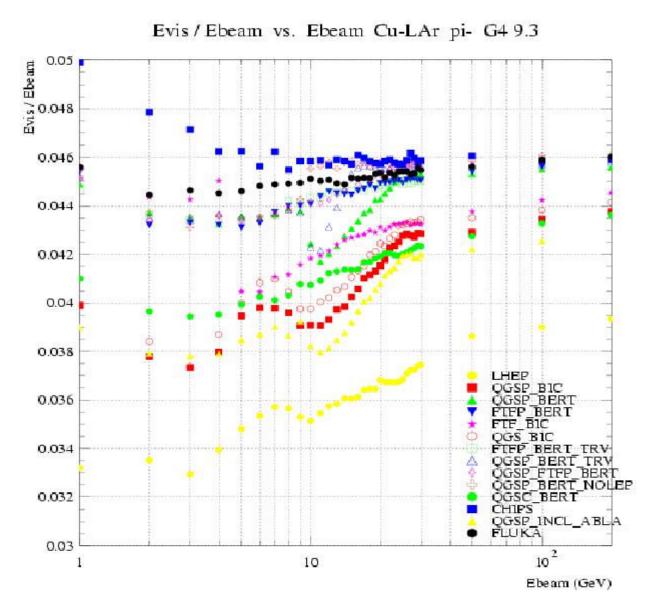


Physics Lists: Promise and Problems

- Building a complete set of physics processes from a toolkit of models and cross sections is
 - very flexible
 - very powerful
 - potentially dangerous
- Getting the models to match where they join one another
 - requires care in making sure distributions in one energy region blend smoothly into those of another region
 - requires thorough validation in regions where models overlap
- QGSP_BERT physics list has done the best job so far
 - currently used in ATLAS, CMS, LHCb production
 - good agreement with measured shower width, length
 - but it still has problems (see slide 11)

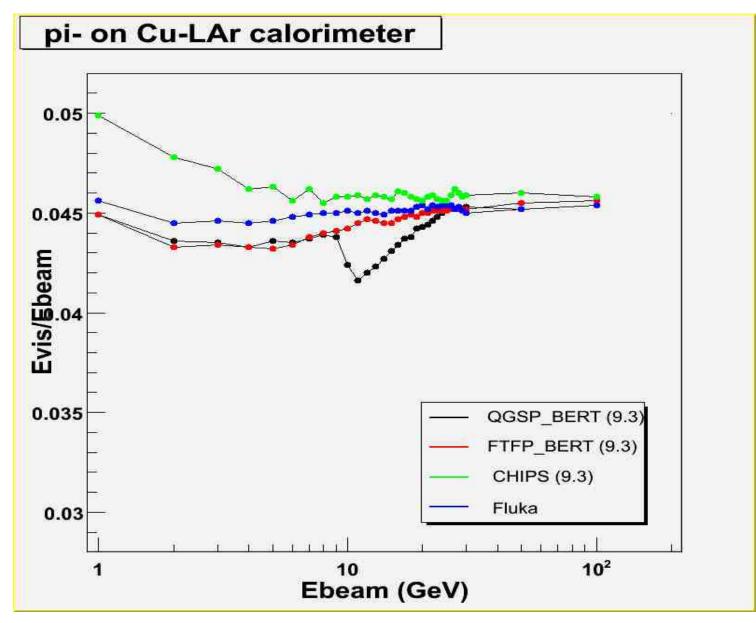
Physics Lists: QGSP_BERT

For most hadrons, the following combination of models is used:

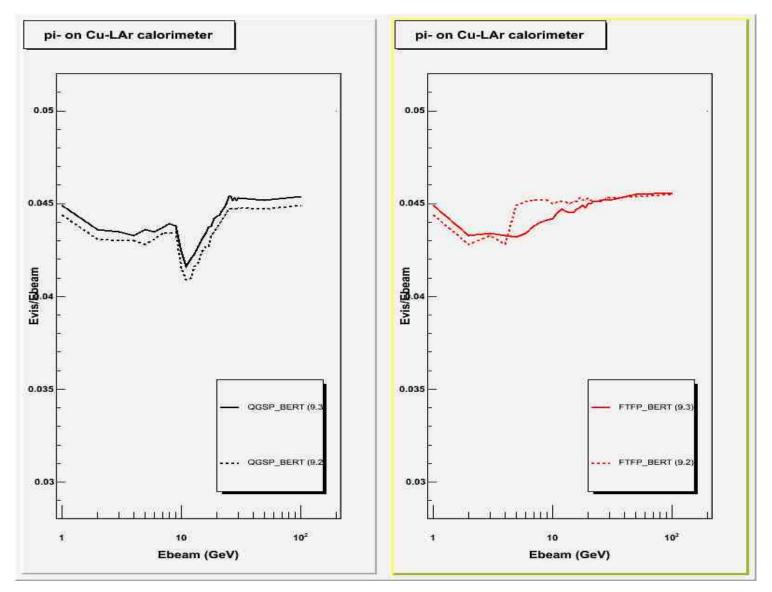


For now, LEP models (GHEISHA) are used to fill the gap between Bertini and QGS => not ideal due to several shortcomings in LEP

Physics Lists: Alternatives

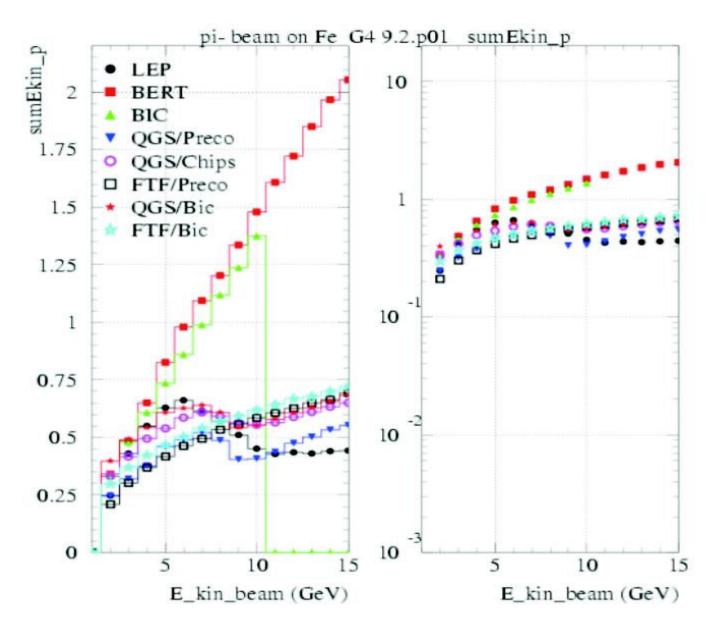

- Goal is to eliminate LEP models for most hadrons
 - extend Bertini to higher energies
 - extend QGS to lower energies
 - try different string models (FTF)
- Alternative physics lists for HEP
 - FTFP_BERT
 - recent improvements in FTF and Bertini models make this a very promising choice: now use FTF down to 6 GeV
 - CHIPS
 - new physics list using models from Chiral Invariant Phase Space at all energies, but still being tuned
- These (and others) are being tested in simplified calorimeter models

Visible Energy in Simple Calorimeter



10

Visible Energy for 4 Physics Lists (9.3)



Visible Energy for 2 Physics Lists (9.3 vs. 9.2)

12

Model Performance

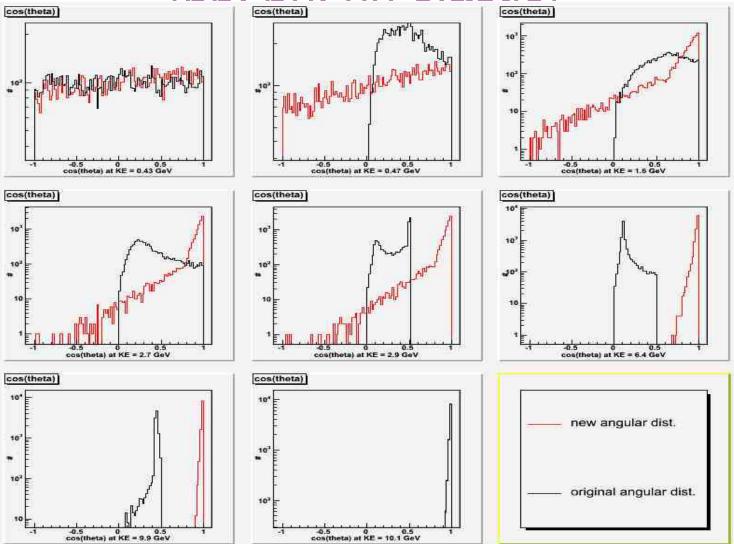
EM Physics Developments

- Low energy and standard EM processes now have a common design
 - no longer two different classes for same physics process (e.g. G4LowEnergyPhotoElectric and G4PhotoElectricEffect)
 - all EM processes now follow "model approach" which allows different models to be assigned to a process (e.g. standard, Livermore and Penelope models)
- G4MultipleScattering replaced by specialized versions:
 - G4eMultipleScattering for e+/e-
 - G4MuMultipleScattering for mu+/mu-
 - G4hMultipleScattering for charged hadrons and ions
- Old code kept for backward compatibility until Geant4 10.0

- new processes already included in reference physics lists

Electromagnetic Physics Developments

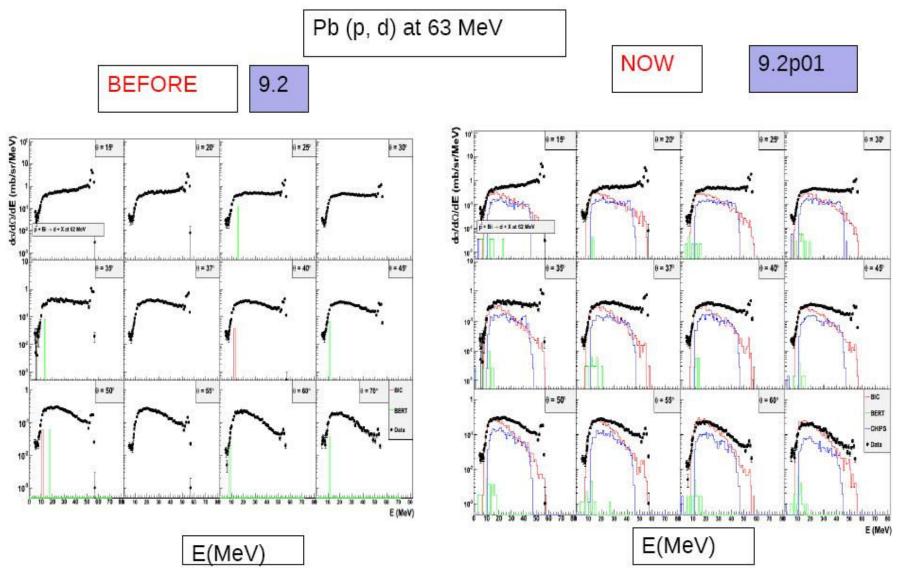
- EM code in HEP physics lists has been fairly stable since V8.0
- There are now HEP physics lists with options for different collections of EM processes
 - default (standard HEP EM physics)
 - EMV (faster but less precise)
 - uses multiple scattering code from Geant4 V7.1
 - recommended options for HEP using these lists:
 - QGSP_BERT, QGSP_BERT_EMV
 - FTFP_BERT, FTFP_BERT_EMV
- Other options exist, but are mostly for low/medium energies
 - EMX (sub-cutoff secondary generation for ionization)
 - EMY (most precise models for low/intermediate energies)

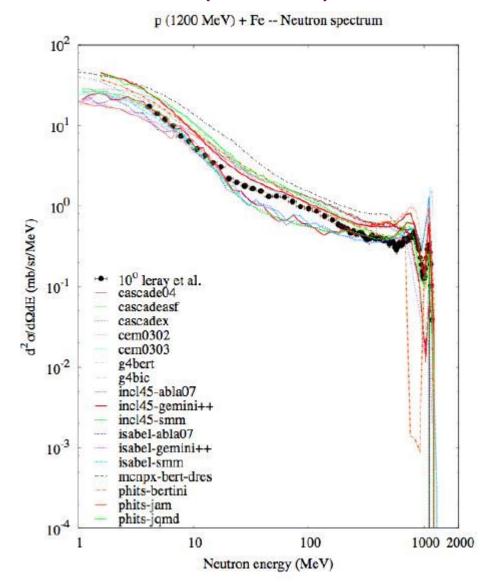

Hadronic Physics: Fritiof Fragmentation (FTF)

- Before 9.3 model produced too much energy to secondaries at energies below 10 GeV (see slide 12)
- The following fixes improved this situation significantly
 - added reggeon cascade
 - particles resulting from initial high energy interaction can initiate cascade in nucleus
 - cascade is performed with reggeons instead of p, n, pi, etc.
 - direct pion absorption
 - previous cross section was factor ~4 below measured pion absorption data
 - charge exchange added for pn -> np
 - previously treated only as elastic

Hadronic Physics: Bertini Cascade

- Cross section review
 - discovered significant differences from PDG values in internal hadron-nucleon cross section code
 - all cross sections reviewed and re-implemented
- Angular distribution review
 - currently underway
 - significant corrections already included in 9.3 for pp, pn, nn elastic scattering (see slide 18)
 - effect is a slight lengthening of shower
- Extension to higher energies
 - addition of 7-, 8- and 9-body final states in intra-nuclear collisions improves behavior slightly between 5 and 10 GeV


Bertini Angular Distribution Improvement (pp. pn. nn elastic)


Hadronic Physics: Nuclear De-excitation

- Precompound model
 - $-\Delta n = +/-2$ particle-hole transition probabilities were factor 5 too low now fixed
 - bugs fixed: negative transition probabilities for light elements
- Nuclear evaporation models
 - improved inverse cross sections
 - fixed several evaporation probabilities
 - more detailed evaporation channels
- Fermi breakup and fission models
 - fixed unit conversion errors (keV vs. MeV)
- All of the above significantly improved agreement of precompound and binary cascade with low energy data (< 1 GeV)

Low Energy Validation (precompound)

Low and Medium Energy Validation (IAEA)

Plans (1)

- Quark-gluon string (QGS) model: add reggeon cascade
 - will extend model validity down to 5-10 GeV
 - LEP models will no longer be needed for p, n, pi
- Bertini cascade
 - need to find a way to shut down the runaway cascade above
 5 GeV => implement trailing effect
 - implement formation time?
 - complete angular distribution review for pions, inelastic reactions
- Find better way to make transition between string model and cascade model
 - currently use energy blending (see slide 8)
 - formation time is a possibility

Plans (2)

• Fast neutron capture

- especially important for calorimeters with plastic scintillator
- beta version exists which emits a single gamma following n capture, 4-momentum conserved
- uses simplified low energy cross sections to save time
- Hadron-nuclear cross section re-design
 - many new and improved cross sections have been made available in the last two years => confusing
 - simplified code design
 - cross section documentation and validation
- Expanded validation effort
 - new hadronic validation framework (slide 6)
 - new cross section, ion-ion, stopping processes validations

Summary (1)

- Model improvements have led to better behavior
 - shower shapes
 - visible energy
 - agreement with low energy thin-target data
- Further model improvements will allow:
 - simpler physics lists
 - the elimination of the LEP (GHEISHA) physics models
 - smoother transition from cascade to string models
- Increased validation effort
 - already a large number of validation plots to browse
 - new validation framework will add more

Summary (2)

- Looking forward to closer collaboration with Calice
 - use data to validate Geant4
 - perhaps develop a simplified Calice model for regular Geant4 validations
- Thanks for the invitation I'm looking forward to the rest of the meeting