

AHCAL Calibration Status

Nils Feege University of Hamburg

CALICE Collaboration Meeting Arlington (Texas), March 10-12, 2010

Outline

MIP Calibration 2007

Temperature Correction

Gain Calibration 2007

Temperature Correction

Saturation Correction

MIP: Measuring Coefficients

- MIP coefficient for each cell: MPV of gauss * landau fit to muon response
- established method: χ^2 fit
- new approach: maximum likelihood fit -
 - \rightarrow more stable
 - → only small number of events required (results for each muon run)

MIP: Comparing χ^2 And Likelihood Fit

- same data set used for both fit methods
- 99.4 % correlation
- shift: results obtained from likelihood fit 3% larger than from χ^2 fit

MIP: Temperature Dependence

Different methods to determine dA^{MP} / dT:

- 1) use average $1 / A^{MP} dA^{MP} / dT = -3.8 \%/K$ (at 27 °C)
- 2) linear fit for each channel

MIP coefficients from χ^2 fit: need **set** of muon runs for each value MIP coefficients from likelihood fit: one value **for each** muon run

MIP: Temperature Dependence

Different methods to determine dA^{MP} / dT:

- 3) planar fit for each channel
 - include runs taken with different SiPM bias voltage settings
 - only likelihood approach yields enough values

MIP: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of mip constants and mip slopes:
 - set 1) χ^2 fit, 1 / A^{MP} dA^{MP} / dT = -3.8 %/K for all channels
 - set 2) χ^2 fit, linear fit for each channel
 - set 3) likelihood fit, planar fit for each channel
- Include only cells for which all calibration coefficients are available for all sets

MIP: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of mip constants and mip slopes:
 - set 1) χ^2 fit, 1 / A^{MP} dA^{MP} / dT = -3.8 %/K for all channels
 - set 2) χ^2 fit, linear fit for each channel
 - set 3) likelihood fit, planar fit for each channel
- Include only cells for which all calibration coefficients are available for all sets

MIP: Compare Calibration Sets

- # channels, for which mip constant and mip slope are available:
 - set 1) χ^2 fit, 1 / A^{MP} dA^{MP} / dT = -3.8 %/K for all channels \rightarrow 7474
 - set 2) χ^2 fit, linear fit for each channel
 - set 3) likelihood fit, planar fit for each channel

- calibration for reconstruction: set 1)
 - \rightarrow issues with application to FNAL data to be investigated

 \rightarrow 7470

 \rightarrow 7028

Gain Temperature Dependence

- Gain extraction procedure established and unchanged
- Different methods to determine dG / dT:
 - 1) use average 1 / G dG / dT = -1.7 %/K (at 27 °C)
 - 2) linear fit for each channel \rightarrow need cleanup of data set:
 - Step 1: all gain measurements G_i with $\sigma_i/G_i > 1\% \rightarrow bad$
 - Step 2: do linear fit
 - calculate χ^2 for each data point
 - largest χ^2 && $\chi^2 > 9 \rightarrow bad$
 - repeat this step until no bad measurement found

Gain: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of gain constants and gain slopes:

set 1) 1/G dG/dT = -1.7 %/K for all channels

set 2) linear fit for each channel

Gain: Compare Calibration Sets

- CERN 2007 electron data
- Different sets of gain constants and gain slopes:

set 1) 1/G dG/dT = -1.7 %/K for all channels set 2) linear fit for each channel

Gain: Compare Calibration Sets

- # channels, for which gain constant and gain slope are available:
 - 1) 1 / G dG / dT = -1.7 %/K for all channels \rightarrow 7339
 - 2) linear fit for each channel
- lightyield at 27 °C:

→ **5901**

• calibration for reconstruction: set 1)

Saturation: Treatment of ITEP Curves

- Basis for saturation correction: Test bench measurements from ITEP
- old procedure:
 - remove 1st point at (0,0)
 - fit line to 1st 3 points
 - scale linear scale to get slope 1
- SiPM scale [avalanches] 1200 1000 800 2.99 / 16 χ^2 / ndf 600 Prob 0.9998sat-level 1569 ± 157.3 0.6675 ± 0.1791 400 slope I fraction 0.8176 ± 0.1357 200 (plot by N. Mever) 0₀ 500 1000 1500 2000 2500 3500 3000 Linear scale [avalanches]

- new procedure:
 - remove 1st point at (0,0)
 - fit function to 1st 10 points:

$$f(x) = a \cdot \left(1 - \exp\left(\frac{-b}{a}(x - c)\right) \right)$$

Saturation: A New Parametrisation

assume two pixel types (use sum of two exponentials)

• Parametrisation:
$$A_{SiPM} = A_{max} \cdot \left(r_1 \cdot \left(1 - \exp\left(\frac{-A_{lin} \cdot s_1}{r_1 \cdot A_{max}}\right) \right) + r_2 \cdot \left(1 - \exp\left(\frac{-A_{lin} \cdot s_2}{r_2 \cdot A_{max}}\right) \right) \right)$$

Saturation: Effects of Changes

CERN 2007, 15 GeV positrons

- old saturation correction:
 - old treatment of raw ITEP curves (linear fit)
- new saturation correction:
 - new treatment of raw ITEP curves (exponential fit)
 - use parametrised saturation curves
- still missing: individual re scaling factors for each cell to account for different total number of effective pixels

Conclusions

- Chosen set of MIP constants: MPV from x^2 fit
- Temperature correction
 - slopes (MIP): $1 / A^{MP} dA^{MP} / dT = -3.8 \%/K$ for all channels
 - slopes (gain): 1 / G dG / dT = -1.7 %/K for all channels
 - \bullet issues with application to FNAL data \rightarrow to be investigated
- Saturation Correction:
 - new treatment of raw curves (exponential fit to first points)
 - use result from parametrisation
 - procedure / implementation under revision:
 - channels for which parametrisation fails
 - individual re scaling factors for each cell to account for different total number of effective pixels