First look at Photon ID methods

Felix Fehr LPC Clermont-Ferrand

CALICE Collaboration Meeting
Arlington
March 10th, 2010

Photon ID

- Investigate particle ID capabilites
 - distinguish photons from other (neutral) particles (e.g. neutrons, pions)
 - method developed / studied @ Clermont:
 M.Benyamna, P.Gay, Z.Yang
 - test method with CALICE test beam data / MC

- A first look in this presentation:
 - define outline of analysis steps
 - very preliminary plots
 - would like to have some feedback

The method

Based on longitudinal shower shape for 1-100 GeV

$$f(\mathbf{E},t) = \frac{(bt)^{a-1}e^{-bt}}{\Gamma(a)}$$

 $\langle t^n \rangle = \int_0^\infty t^n f(\mathbf{E}, t) dt$

normalised shape t depth in rad. length

$$\langle t \rangle = \frac{a}{b} \qquad \langle t^2 \rangle = \frac{a^2 + a}{b^2}$$

- a,b can be expressed by moments of t
- use combination of energy dependent a,b as statistical estimators for photon ID
- possibly include more variables later

The algorithm

Clusterisation to define photon signal hits

Calculate shower axis

Compute estimators a and b

Compare calculated estimators with expectation

A first look

- Clusterisation to define photon signal hits include all hits in the calorimeter prototype
- Calculate shower axis normally incident beam only / test tensor of inertia
- Compute estimators a and b
 use 1:2:3 sampling fractions to determine energies
 radiation depth calculation includes only tungsten
- Compare calculated estimators with expectation extract expectation from data (use electron samples) and simulation

Data / MC sets

Use data from 2006 electron runs;

Energies {6,10,12,15,20,30,40,45} GeV

normally incident beam only

Electron MC

(for 2006 electron analysis, not most recent version)

Energies {6,10,12,20,30,40} GeV

normally incident beam only

Shower axis / tensor of inertia

- Compute and diagonalise tensor of inertia
- Eigenvector with smallest eigenvalue yields shower axis

Tensor of inertia

$$I = \sum_{k=1}^{\infty} m_{k} \begin{vmatrix} y_{k}^{2} + z_{k}^{2} & -x_{k} y_{k} & -x_{k} z_{k} \\ -x_{k} y_{k} & x_{k}^{2} + z_{k}^{2} & -y_{k} z_{k} \\ -x_{k} z_{k} & -y_{k} z_{k} & x_{k}^{2} + y_{k}^{2} \end{vmatrix}$$

- Not gaussian: $f(heta, oldsymbol{\phi})$ $oldsymbol{d}$ $oldsymbol{\Omega}$
- Results do look quite good

Space angle between reconstructed and true shower direction

Profile parameters: a

- Extract mean and variance from data / MC
- Fit: p0 + p1 log(E)

Small difference in p1

Profile parameters: b

- Extract mean and variance from data / MC
- Fit: p0 + p1 log(E)

Problem: errors (for data) are underestimated

Shower maximum

Comparision data / simulation

5% difference between data and simulation

simulated shower maximum occurs later

have to redo analysis with newest simulation

Summary / next steps

- Use shower profile parameters (mean and variance) for photon ID
- Shower axis calculated using tensor of inertia

TODOs:

- understand differences MC / data (use latest MC)
- use detailed / energy dep. sampling fraction
- use more exact values for radiation depth
- possibly generalise methods to include more estimators
- characterise method by looking at background processes (e.g. neutrons), determine efficiency vs. purity curves