Mokka Studies of AHCAL Tiles Gaps and Non-uniformities

Angela Lucaci-Timoce

Introduction Gaps and Tiles wih WLS Gaps and Tiles with Direct Coupling of SiPM Conclusions

Overview

Problem: scintillator AHCAL driver for ILD has

- virtual tiles (i.e. no separate volumes)
- no gaps between tiles
- no gaps between HBUs (HCAL electronic base units)
- no simulation of tile non-uniformity

• Theorem:

- Virtual vs real tiles:
 - no significant impact on physics
 - from the technical point of view, difficult to implement for the ILD AHCAL (millions of tiles, assymmetry, GEANT4 limitations)
- Gaps between tiles and HBUs: no significant impact on physics
- Partial) proof: this talk

ILD Design

- Electronics integrated into absorber structure
- Basic eletronic unit (HBU): 36 × 36 cm² (144 tiles)

AHCAL Implementation in Mokka

- 2 × 8 staves, each divided in two halves in the(x, y) plane
- Implemented: gaps between staves, gaps between modules (along z), layer support structure, air gap

Counter-argument

• Response of CALICE Si-W ECAL to e⁻:

- inter-wafer gaps (2 mm) significant compared to transverse shower size
 ⇒ degradation of detector response
- figure: normalized response function (for a combined sample of 10, 15 and 20 GeV *e*⁻) vs shower barycenter coordinates

Gaps and Tiles with Wavelength Shifting Fiber (WLS): Strategy

- New Mokka driver, similar to the test beam AHCAL, i.e. (38 layers, 20 mm Fe absorber), but with 3 × 3 cm² tiles
- 6 × 6 tiles grouped to an electronic unit (HBU=HCAL base unit)
- Studies done with simulated hits only: no digitisation, no ECAL in front

Strategy - continued

- Tile and HBUs gaps: 2 sets, unrealistic (1.5 and 5 mm), and realistic (0.15 and 0.5 mm, respectively)
- Particle type: e^- , π^- , with energies 5 and 50 GeV
- Beam position scan: 30 points
- Each combination: 10000 events ⇒ Long live NAF (batch system available for German institutes)

Dead regions

- Dead regions (due to mirror and SiPM cut-outs): OFF/ON
- Approximately 80% energy loss in the WLS area, according to measurements done by our Russian colleagues

How to read the next plots

- Beam with no spread
- *y_{beam}*: in the middle of the tile
- x_{beam} from the middle of the second left tile, to the center of the first right tile (relative to the AHCAL center)
- Look at the AHCAL summed energy distribution
- Plot the mean of the histogram (no fit)

Results: UNREALISTIC gaps

Electrons

Results: realistic gaps

Electrons

How to read the next plots

- Beam with no spread
- SiPM cut out: 3 mm radius semi-circle
- y_{beam}: 1 mm from the center of SiPM
- x_{beam} from the middle of the second left tile, to the center of the first right tile (relative to the AHCAL center)
- Look at the AHCAL summed energy distribution
- Plot the mean of the histogram (no fit)

Results: UNREALISTIC gaps

Electrons

Results: realistic gaps

Electrons

Gaps and Tiles with Direct Coupling of SiPM

- Based on non-uniformity measurements done by Christian Soldner (MPI, Munich) in his diploma thesis
- 2 cases chosen: unmodified SiPM (worst) and mini-SiPM (best)

Results: UNREALISTIC gaps, step along *x*

Electrons

Results: realistic gaps, step along *x*

Electrons

Results: UNREALISTIC gaps, step along *y*

Electrons

Results: realistic gaps, step along y

Electrons

Conclusions

- Gaps and tiles with WLS:
 - Effect of realistic gaps between AHCAL tiles and HBU's visible for electromagnetic showers, but minimal for hadrons
 - Dead regions \Rightarrow less energy deposited
- Gaps and tiles with directly coupled SiPM:
 - Non-uniformity relevant for realistic gaps and for electrons, smaller effect for hadrons
 - Effect increases with increasing energy, because the shower is boosted; possible solution: rotate position of SiPM in cells in subsequent layers by 90° (see diploma of Christian Soldner)

In the ILD case:

- ECAL in front of AHCAL \Rightarrow most of the electrons will not reach AHCAL
- Tiles are staggered ⇒ gaps will not be aligned

Acknowledgements

Many thanks to Christian for providing the non-uniformity measurements

BACK-UP SLIDES

ITEP Measurements

 Measurements performed at ITEP (Russia) in hadron test beam, using a wire chamber tracking system (σ ≈ 1 mm)

- Results: mean response in 1 × 1 mm²
- Left and right edges: 10% less response
- Fibre: 20% less response
- Mirror and SiPM: very low response

ITEP Measurements: EDGES

ITEP Measurements: FIBRE

20% lower response

