

Low – energetic Pions in the Analogue HCAL

Nils Feege University of Hamburg

CALICE Collaboration Meeting Arlington (Texas), March 10-12, 2010

Outline

- π Data (FNAL, AHCAL stand alone, 1 GeV 20 GeV)
 - Rejection of multi-particle events
 - Rejection of muon events
 - π Enhancement Using Čerenkov Trigger
 - Electron Contamination
 - Check of Temperature Correction
- AHCAL Linearity
- First Comparisons Data / MC

Rejection of Multi – particle Events

- 20x20 cm² scintillator (analog + digital PMT readout)
- cut: analog signal < 4000 ADC-channels \rightarrow reject events with >1 particle
- reject ~ 10-30% of all beam events
- Possible improvements: optimize threshold (\rightarrow B. Lutz)

Rejection of Muon Events

Example: π run at -10 GeV (520308)

- cut: TCMT energy sum \leq 10.5 mip \rightarrow reject μ events
- reject ~ 40% of all beam events
- possible improvements: use AHCAL + TCMT information or μ finding algorithm

π / μ Separation At 1 GeV

- TCMT cut not useable for 1 GeV μ
- separation π / μ in AHCAL: energy sum in last 12 layers
- cut: AHCAL energy sum (layers 27 38) < 8 mip \rightarrow reject μ events

Muon Rejection At 1 GeV

 cut: AHCAL energy sum (layers 27 – 38) < 8 mip && TCMT energy sum ≤ 10.5 mip

 \rightarrow reject μ events

- reject ~85% of all beam events
- possible improvement: use μ finding algorithm

Differential Čerenkov – Counter

Čerenkov Operating Pressure (π Data)

 π (6 – 32 GeV): tag π

Trigger: 10x10 && C

 π (1 – 4 GeV): veto e

Trigger: 10x10 && ! C

2008: maximise e detection / rejection efficiency → operate at 20 psia

2009: minimise material (gas), multiple scattering and generation of knock – on electrons in Čerenkov to maximise π rate

 \rightarrow operate at 2 psia

DAQ rate @ 2 psia ~factor 1.6 larger than DAQ rate @ 20 psia, π content?

e / π Separation At Low Energies

 $\pi - MC$ at 4 GeV

 $E_{F} = energy sum$

$$E_{_{\rm B}}$$
 = energy sum

Best variable to separate e from π at 1 – 20 GeV:
energy sum (layers 1 – 5)
energy sum (layers 1 – 38)

chergy sum (layers 1 – 50)

- TFractionFitter (ROOT): Fit of sum of MC distributions to data histogram
 - Input: histograms (data, πMC , e MC)
 - Output: fractions of π and e MC that describe the data best

Electron Contamination

Results For FNAL Data

- AHCAL stand alone running (2008, 2009)
- cuts for rejecting multi particle and muon events applied
- > 2 GeV: e contamination neglibigle
- errors purely statistical \rightarrow should be asymmetric (π content = 1 is upper limit)
- e veto: operating Čerenkov at 2 psia yields comparable purity at ~1.6 times higher DAQ rate

Temperature Correction: 4 GeV π Data

 \rightarrow similar picture for other energies

Nils Feege - University of Hamburg

Linearity

residual = (data – line) / line

Energy Sum Data / MC

- Data and MC: mean noise subtracted
- MC data very preliminar:
 - Mip / GeV factor for 80 GeV μ calibration applied (FNAL μ : 32 GeV)
 - Particle gun placed directly in front of AHCAL center

Energy Sum Data / MC

Summary & Outlook

- π content above 2 GeV beam energy: > 98% \rightarrow enhancement via Čerenkov trigger worked
- AHCAL Linearity (π data 4 GeV 20 GeV): better than 2%
- Data / MC comparison using AHCAL π data from FNAL ongoing
- Next steps:
 - Improve simulation by applying the correct mip/GeV factor, adding missing components (Čerenkov, He tubes, FNAL instrumentation) and using the true beam position and spread
 - Check further shower properties, e.g. longitudinal profiles
 - Refine cuts for event selection
 - Investigate temperature (over-)correction

BACKUP SLIDES

Veto Wall

1x1 m² scintillator with 20x20 cm² hole Reject ~10% - 40% of events (decreasing with beam energy) no improvement of distribution visible -> do not use this cut

Temperature Correction: 2 GeV π Data

Example: Enhancing p / π / e Content

Beam energy: 10 GeV

e / π Separation Power

quantifying the convenience of various variables for e / π separation: determine overlap between distribution for e and π (MC, normalized to 1) separation = 1 – overlap

Reconstructed Energy

residual = (data – line) / line

Energy Sum Data / MC

