Micromegas DHCAL

Status Report and Future Plans CALICE Meeting UT Arlington, Texas 12th March 2010

Ambroise Espargilière on behalf of the LAPP group

Outline

- Brief reminder
 - Prototype caracteristics
 - Electronic realisations
 - Bulk Micromegas with embedded readout electronics
- Beam tests results
 - Analog readout
 - HARDROC 1-2
 - DIRAC2
- 2010 plans
 - VFE Electronics developments (readout ASIC, spark protection)
 - First m² technological prototype status
 - Beam tests
 - Simulation activities
- Conclusion

Reminder: MICROMEGAS

- MICROMEGAS detector
 - MICRO MEsh GAseous Structure
 - High detection rate
 - Low voltage (all < 600V)
 - − Bulk technology
 →Robust, cheap
- Prototype layout
 - 128µm bulk
 - 3 mm conversion gap
 - 2 mm absorber as chamber cover

Reminder: basic performance

- Prototype basic performances (test beam 2008)
 - MIP most probable value : ~20fC (11% r.m.s.)
 - Efficiency > 97%, channel non-uniformity < 1% (1.5fC threshold)</p>
 - Multiplicity < 1.1 , chamber non-uniformity < 1.5%

Reminder: Electronics (see C. de la Taille's talk)

- DIF (Detector Interface) developed at LAPP and ready for mass production
- Recent developments for the new CALICE DAQ:
- \rightarrow 8B/10B Communication protocols validated (LAPP/LLR)
- \rightarrow CCC (Clock and Control Card) integration in work at LAPP

Digital Readout

- Bulk MICROMEGAS with embedded Readout electronics
 - HCAL compactness \Rightarrow embedded VFE
 - Install bulk or VFE first ? ASICs won't survive being laminated Bulk won't behave well in the soldering oven
 - \rightarrow Solution: VFE first with protection mask for the
 - ASICs

2 types of ASICs concideredHARDROC , 2 versions (LAL)DIRAC2 (LAPP/IPNL)

2009 Beam tests results summary SEPT 2009: GASSIPLEX

hadron showers (1-6 GeV, 6 Abs.)

7

2009 Beam tests results summary SEPT 2009 : HARDROC 1

- Threshold ~5fC \rightarrow expect ~90% efficiency or more
- Measurement \rightarrow 8 14 % (extremely low !!)

2009 Beam tests results summary SEPT 2009 : HARDROC 1

- MICROMEGAS signal
 - Fast electron signal (~1 ns)
 - Slow ion signal (~100 ns)
 - ~90% signal due to ions (e-/ions = $1/\ln(Gain) \approx 0.1$)
- HARDROC shaping time very short (10-20 ns)
 - electron drift velocity (~50 μ m/ns)
 - \rightarrow only one mm of gas is seen (2/3 signal lost)
 - \rightarrow the ion tails can't be seen (~90% of signal lost)
 - HARDROC sees only 0.1 x 1/3 x 20fC \approx 1fC as signal MPV

New acquisition software

- X-DAQ left out
- Labview software for calibration, monitoring and data acquisition
- Version for HR1, HR2, DIRAC2
- Version for hybrid readout foreseen
- ~ 100Hz acquisition rate (24 HR2)

Enable/disable monitoring

sisition 48HR2 V2 0.vi

2009 Beam tests results summary NOV 2009: HARDROC 2

- One 32x48 ASU in test box
- Beam profile
- Efficiency very low (as expected with HARDROC)
 - → measurements via« self tracker » or « TPC » mode (1cm gas)

3 cm

Calo mode

- Many chips were dead (reason not obvious)

Ambroise Espargiliere (LAPP) CALICE meeting at UT Arlington **TPC** mode

2009 Beam tests results summary NOV 2009: DIRAC 2

- Stack of 4 8x8 MICROMEGAS chambers equiped with DIRAC 2
- Only 3 hours commissioning
- 4-fold coincidences immediately observed
- Destructive sparks killed channels one by one after few hours functionning
 - Few data available
 - No time for threshold optimisation

2009 Beam tests results summary NOV 2009: DIRAC 2

• DIRAC performances

(no threshold optimisation)

Multiplicity

Chamber 1: 1.13 (6fC) Chamber 2: 1.11 (6fC) Chamber 3: 1.07 (14fC) Chamber 4: 1.06 (14fC)

Efficiency

Chamber 1: $12 / 27 = 0.4 \pm 0.1$ (6fC) Chamber 2: $14 / 29 = 0.5 \pm 0.1$ (6fC) Chamber 3: $14 / 30 = 0.5 \pm 0.1$ (14fC) Chamber 4: $14 / 30 = 0.5 \pm 0.1$ (14fC)

Not corrected for synchronous functionning

S Compatible with previous

measurements

Digital readout Conclusions and outlook

- HARDROC 1 and 2 input stage not adapted to MICROMEGAS signal
- DIRAC 2 showed fragility to sparks
- HARDROC showed fragility not fully explained (sparks ? Commissioning ? ...)
- New chip is needed
 - Optipmized for MICROMEGAS signal
 - Hardened design against sparks
- Improved external spark protection needed

2010 plans : **VFE Electronics developments**

- New input stage developped for the next generation ASIC Preliminar
 - Optimized for MICROMEGAS
 - Simulations give S/N=10 @ 1fC, noise r.m.s. 0.1fC @80pF
 - Integrable to HARDROC or DIRAC design
- Spark protections
 - PCB to test various protection schemes
 - Spark generator (large capacitance discharging in the PCB)
 - Test of burried components undergoing and promissing

2010 plans: First technological m² prototype (1)

- Mechanical Prototype validated the assembly procedure (6 dummy ASUs)
- Available ASU for technological prototype
 - 4 ASU with HARDROC2 chips (under tests, almost all ready)
 - 1 ASU with HARDROC2b chips (PCB in cabling)

1 dummy ASU (6 ASU 32x48 are necessary)

2010 plans: First technological m² prototype (1)

- Mechanical Prototype validated the assembly procedure (6 dummy ASUs)
- Available ASU for technological prototype
 - 4 ASU with HARDROC2 chips (under tests, almost all ready)
 - 1 ASU with HARDROC2b chips (PCB in cabling)

1 dummy ASU (6 ASU 32x48 are necessary)

2010 plans: First technological m² prototype (2)

- All ASU tested between each step
 - Electronics:
 - Return from cabling
 - Return from bulk lamination
 - After bulk cooking
 - Full calibration
 - ⁵⁵Fe and/or cosmics with a test box
- Clean room \rightarrow naked mesh ASU
 - Perform mesh cooking in air
 - Insert/remove ASU from test box
- m^2 completion \rightarrow validate full design & processs $\frac{14000}{10000}$

2010 plans: Beam tests

- Beam test second half of June 2010 at CERN/SPS/H4
 - m² tests
 - Test m² functionnality
 - Measure efficiency, multiplicity and uniformity
 → Use HR1 or DIRAC ministack stack as a telescope
 - DIRAC tests
 - Measure efficiency, multiplicity and uniformity
 - Test power pulsing in magnetic field
 - Spark study
- Beam test mid November 2010 at CERN/PS
 - m² tests in/behind W structure

2010 plans: Simulation activities

- Study impact of supporting structure on the HCAL performance
- Projective and non-projective geometries are considered

2010 plans: Simulation activities

Conclusion

- Project delayed
 - HARDROC 1 & 2 not applicable to MICROMEGAS
 - DIRAC 2 not spark proof
- Main benchmarks:
 - Commissioning of m² technological prototype
 - Optimized readout chip
 - Upgraded spark protections
- Intensive R&D activities
 - LAPP group is involved in several fields (DIF task force, Mechanical engineering, detector R&D, simulations)
 - Detector R&D highly supported by in2p3