

Preparation of HCAL Beam Tests with Tungsten Absorber Plates

W. Klempt / CERN

Motivation Goals and Objectives Commercial available Tungsten Plates Workshops in Annecy and DESY Proposal for a W HCAL Prototype Conclusion

CALICE Workshop at UT Arlington 12/03/10

Motivation

 Physics at CLIC with a center of mass energy of 3 TeV requires to build a calorimeter system with rel. small energy leakage.

=> Design value for $\lambda_{int} \ge 1$ (ECAL) + 7 (HCAL)

Space available for barrel HCAL inside (reasonable sized) coil: Δr ≈ 1.40 m

=> need to use a more dense material than Fe

• Why not use W as absorber material in HCAL??

Motivation

- No experience with W as absorber material in HCAL
- $\lambda_{int}(W) = 10 \text{ cm}$, $X_0(W) = 0.35 \text{ cm}$
- $\lambda_{int} (Fe) / \lambda_{int} (W) = 1.7$, $X_0 (Fe) / X_0 (W) = 5$
- For a W absorber:
 - less visible energy (ionization)
 - more neutrons (spallation)
- PFA analysis requires very fine granularity in both ECAL and HCAL
- For colorimeter design simulations need to be reliable and understood to a rather precise level.

Goals and Objectives for a W HCAL Prototype

- Validate and adjust simulations for HCAL performances
 - Linearity / energy
 - Resolution / energy
 - Shower structure in comparison to Fe
 - Time structure of signal (neutrons)
 - Compare scintillator with gaseous detectors
 - Experience with W plates

Later

- Other detector technologies
- Combine with ECAL proto

— ...

Mechanical Properties of Tungsten

	Pure W	INERMET 176*	Steel
% Tungsten	100	92.5	-
Alloying materials	-	Cu, Ni	-
Elasticity (Young) [GPa]	400	350	200
Density [g/cm ³]	19.3	17.6	7.85
% Elongation at yield	< 5**	5	30-50

*Alloys used must be paramagnetic, **Tests required

Plate Size and Tolerances

Currently available plate sizes
 Pure Tungsten
 INERMET

1200 mm x 1600 mm 400 mm x 600 mm

- Thickness of 10 mm is feasible for both
- Flatness tolerance ca. 1.5 mm
 - < 1 mm possible
- Thickness tolerance ± 0.5 mm
 - With machining $\pm 0.1 \text{ mm} (\text{cost} \uparrow)$

Workshop in Annecy on 24/9/09 Workshop in DESY on 2/3/10

- The LCD-CERN, CALICE-DESY and LAPP groups agreed to work together and construct a W-HCAL prototype starting 2010.
- More collaborators should be found
- First test beam measurements scheduled for November 2010 at PS (π up to 12GeV/c)
- Test setup is starting to be prepared.

Prototype Simulations

Detectors:

- Scintillator
- Micromegas

Absorber:

- W with thickness between 10 to 12 mm
- Pure W vs W "alloy" (92.5% W + 4% Cu +3.5% NI)

Simulations:

- Shower size
- Containment
- Compare different absorber materials (i.e. W and Fe)
- Compare different physics lists in Geant 4

Simulations done by J. Blaha (LAPP), C. Grefe (CERN) and A. Lucaci-Timoce (DESY)

Shower Profiles

Longitudinal Containment

Fraction of 95 % Contained Events

10 mm WMix + µMegas (two 2 mm Fe covers)

12 mm W + 5 mm scint + 2.5 G10

10 GeV pions	20 layers	40 layers
60 x 60 cm ²	12 %	41 %
80 x 80 cm ²	16 %	60 %

Lateral Containment

lateral shower containment digital, 24mm, 80 layers, WMix abs, QGSP_BERT E/E_{total} pi- 10 GeV fraction 95 % pi- 100 GeV 1.0 pi- 200 GeV 0.9 95 % 0.8 0.8 0.7 0.6 0.6 0.5 0.4 0.3 10 GeV π⁺ QGSP_BERT 0.4 0.2 10 GeV n⁺ QGSP_BERT_HP 0.1 20 GeV n⁺ QGSP_BERT 0.0 20 GeV n⁺ QGSP_BERT_HP 0.2 25 30 35 0 15 40 45 5 10 20 50 radius [cm] 20 40 60 80 100 0 radius [cm] Jan Christian

> In deep calorimeter (80 layers or "infinite"), 95 % of energy is contained in calorimeter with lateral size ~ 60 cm

Lateral Containment

Fraction of 95% Contained Events

10 mm WMix + µMegas (two 2 mm Fe covers)

12 mm W + 5 mm scint + 2.5 G10

 Significant difference in number of fully contained events for W alloy and pure W → larger lateral size should be considered for WHCAL prototype with alloy absorber in comparison with pure W

W HCAL Prototype

- Start 2010 with a "small" prototype:
 - Start with ~20 W plates size ca 81x81 cm², 1 cm thick
 - Use as much as possible existing equipment from CALICE AHCAL (detector planes, readout electronics, DAQ, mechanical infrastructure.....)
 - First test beam at PS in autumn 2010
 - Later increase depth to 38 or more layers

Market Survey on Tungsten Supply

- MS presented to CERN Finance Committee in dec 2009
- Send out 20.1.2010 to 9 companies
- MS closed on the 19.2.2010
- Received 3 positive answers
 - PLANSEE Metall GmbH, Austria pure W ρ ≈ 19.3 g/cm3
 - − PLANSEE Tungsten Alloys CIME BOCUZE, France pure W $\rho \approx 17.5$ g/cm3
 - Special Metals and Products, Spain pure W ρ ≈ 19.3 g/cm3

-	270 ·	-

Tungsten plates

Invitation to Tender

- Invitation to tender is prepared now, will be send out this week
- Delay for answers is 4 weeks invitation for tender will be closed by ~ 15.3.2010
- Place order by 30.4.2010
- Receive 4 batches of 25 squares and 20 triangles on 15 June, 30 June, 15 July and 31 July
- Start to equip absorber plates from 15 June onwards

Tungsten plates Thickness 10 mm

Design of Frames

Tungsten Absorber Stack

Compatible with movable table

Tungsten Absorber Stack with Stack Support for the Movable Table

Tungsten Absorber Layer

Layer structure with tungsten absorber plates

(with sensitive layer modification)

AHCAL vertical test setup

Test Module

East-Hall/ T9 Layout

East-Hall/ T9 Layout

Triple-GEM Detector

Cathode Plane and Read Out

Detectors to be used

In 2010 start with existing CALICE scintillator cassettes

Overall size 90 x 90 cm² Central area equipped with small (3 x 3 cm²) cells

Equipped with readout and calibration

Future Detector Planes

 Micromegas detector planes with a cell size of 1x1cm² and digital reads ASU out (pads side)

 Scintillator planes with a cell size of 3x3cm² over the whole surface and analog readout

Schedule

Preliminary PS/SPS Schedule: we run 8/11 to 22/11

		Thu 21 Oct	Fri 22 Od	Sat 23 Oct	Sun 24 Oct	Mon 25 Wk45	Tue 26 Oct	Wed 27 Oct	Thu 28 Oct	Fri 29 Od	Sat 30 Od	Sun 31 Oct	Mon 1 We44	Tue 2 Nov	Wed 3 Nov	Thu 4 Nov	Frl 5 Nov	Sat 6 Nov	Sun 7 Nov	Mon 8 Wk45	Tue 9 Nov	Wed 10 Nov	Thu 11 Nov	Frl 12 Nov	Sat 13 Nov	Sun 14 Nov	Mon 15 Wk46	Tue 16 Nov	Wed 17 Nov	Thu 18 Nov	Fil 19 Nov	Sat 20 Nov	Sun 21 Nov	Mon 22 Wix47
Machine WED MD																																		
	T7	8h M (alas	er	Irradiation																													
F	T8	8h L N	eme	enov					DIRAC																									
T HA	Т9	8h G A	lexe	eev				T	PANDAM M Klempt WH											CAL														
EAS	T10	8h C C	ecc	hi				T	SUPERB 8h A di Mauro ALICE-TOF																									
_	T11	8h J I	Kirkt	by													C	CLC	DU	D														

Conclusion

- Tungsten offers maybe the possibility to build a compact HCAL with fine granularity readout at CLIC.
- No experience with W in an HCAL
 => need to validate W as absorber material in a prototype.
- Use of existing equipment enables us to get to first experimental result already end of this year