ILC's search for little higgs with T parity parameters ∽ZHZHmode∽

Eriko Kato

Today's topic

Study on b-tagging.
 b-tagging algorithm used in qsim.
 higgs -> WW
 cutting

Features of b-jets:

- B-hadron flies a few mm.
- Tracks are diplaced from primary vertex.
- b is heavy thus produce jets with large transverse momentum.
- There are many ways b can decay
 ex) b→c→...etc
 →b jet has the tendency to produce large amounts of charged tracks.

B(b) secondary vertex

Jet axis

3

Primary vertex

IP

Distribution of # of btag particles

Distribution of # of btag particles

length $\geq 1\sigma$ No.tracks ≥ 3

Majority not recognized as a 4 b-jet ->•efficiency of tagging b as b •other decay modes in sg apart from H->bb

Higgs branching ratio

Standard model information

Pythia information

When higgs mass =134GeV

Distribution of # of btag particles

length $\geq 1\sigma$ No.tracks ≥ 3

Efficiency

(Nσ,#of tracks)	E _b (±2%)	$E_{c}(\pm 0.5\%)$
(1,3)	approx. 60%	approx. 15%
(2,2)	approx. 60%	approx. 25%
(3,2)	approx. 50%	approx. 17%
(2,3)	approx. 50%	approx. 8%
(3,3)	approx. 40%	approx. 5%

 E_b :The probability of one b-jet being tagged as b E_c :The probability of one c-jet being tagged as b

Cutting results

#Event No.	ZHZH	WWZ	nnWW	WW	tt	significance
(efficiency %)						
Cross section (fb)	97.97	5.922	6.682	3932	192.9	
No cut	4.331*10^4	1629	2383	2.592*10^5	7.164*10^4	74.85
(1,3)	1.805*10^4	21.71	725.4	1.995*10^3	6.203*10^4	70.94
#b=1cut	(41.68%)	(1.332%)	(30.44%)	(0.7697%)	(86.58%)	
(2,2)	1.433*10^4	29.6	104	2.545*10^3	5.590*10^4	59.20
#b=1cut	(33.09%)	(1.817%)	(4.364%)	(0.9819%)	(78.03%)	
(1,3)	1.376*10^4	16.78	577.5	1.307*10^3	7.206*10^3	144.2
#b=1&acop<25 cut	(31.77%)	(1.030%)	(24.23%)	(0.5037%)	(10.06%)	
(2,2)	1.081*10^4	18.75	84.00	1.444*10^3	6.328*10^3	121.9
#b=1&acop<25 cut	(24.96%)	(1.151%)	(3.525%)	(0.5571%)	(8.833%)	

* All events are under the condition chi2<100

 $significance \equiv \frac{sgNo.events}{\sqrt{bgNo.events}}$

<u>plan</u>

- Fit higgs energy distribution with function and check if any of the cuts have messed with the edge.
 - ->decide which parameter set to select.
- Futher study on cutting.

How to increase significance without cutting the edge of higgs energy distribution.

signal

Main background

