### Direct Coupling of SiPMs to Scintillator Tiles: Timing and Uniformity

Christian Soldner

Max-Planck-Institut für Physik

Tungsten Prototype Workshop DESY, 2. März 2010



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)







#### SiPMs and Scintillator Tiles

- C. Soldner
- Motivation
- The Test Stand

- Tile Modification

- Motivation: Reasons for Direct Coupling
- 2 The Experimental Test Stand
- 3 Timing of the Tile Signal
- - Determination of the Tile (Non-)Uniformity
- - Optimization of the Scintillator Tile Geometry

  - 6 Summary and Outlook



#### SiPMs and Scintillator Tiles

C. Soldner

#### Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

### 1 Motivation: Reasons for Direct Coupling

The Experimental Test Stand

Timing of the Tile Signal

Determination of the Tile (Non-)Uniformity







## The CALICE Analog Hadron Calorimeter (AHCAL)

SiPMs and Scintillator Tiles

C. Soldner

#### Motivation

- The Test Stand
- Timing
- Uniformity
- Tile Modification
- Summary

### Development of blue sensitive SiPMs

allow for photon readout without wavelength shifting fiber:

- Advantage: Avoid machining of WLS into millions of tiles (ILD) Avoid difficult alignment of SiPM to WLS-end Improve timing of light collection
- Non-uniform cell readout: Measured energy deposition varies with the lateral position at which a particle traverses the tile
- Position dependence affects the performance of the HCAL







## The CALICE Analog Hadron Calorimeter (AHCAL)

SiPMs and Scintillator Tiles

C. Soldner

#### Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

### Development of blue sensitive SiPMs

allow for photon readout without wavelength shifting fiber:

- Advantage: Avoid machining of WLS into millions of tiles (ILD) Avoid difficult alignment of SiPM to WLS-end Improve timing of light collection
- Non-uniform cell readout: Measured energy deposition varies with the lateral position at which a particle traverses the tile
- Position dependence affects the performance of the HCAL.





## The Effect of Non-Uniform Cell Readout

SiPMs and Scintillator Tiles

C. Soldner

#### Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

Consequences: Subject of further investigations

#### Consequence 1

Distortion of the cell signal distribution

 $\Rightarrow$  Effect on HCAL calibration

#### Consequence 2

Distortion of the energy sum distribution of showers  $\Rightarrow$  Effect on energy reconstruction process

#### Consequence 3

Deterioration of the energy resolution increasing with the particle energy



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

Motivation: Reasons for Direct Coupling

2 The Experimental Test Stand

Timing of the Tile Signal

Determination of the Tile (Non-)Uniformity

Optimization of the Scintillator Tile Geometry





### The Experimental Setup

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



#### **Test Stand Properties**

- Radioactive  ${}^{90}Sr$  source: Beta decay ( $E_{end point} = 2.27 \text{ MeV}$ )
- $\bullet\,$  Movable stage: Translation in XY-direction over  $3\times3\,cm^2$  tile
- Active (Fan, Air Cond.) and Passive (Thermistor) T-control
- $\bullet\,$  Select tile traversing electrons  $\rightarrow\,$  Active coincidence trigger



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

Motivation: Reasons for Direct Coupling

The Experimental Test Stand

Timing of the Tile Signal

Determination of the Tile (Non-)Uniformity

Optimization of the Scintillator Tile Geometry



Summary and Outlook



### Time Resolved Measurements

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

### Fast timing of HCAL implies fast light collection within tiles

- Aquire waveforms of SiPM Signal with 4 GHz Oscilloscope
- High sampling: Arrival of every single photon on SiPM can be identified



### Direct Coupling

Signal from directly coupled tile significantly faster: No delay due to absorption and reemission in WLS fiber



### Time Resolved Measurements

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



# CALICE 1st generation tile with WLS fiber

- Broad signal peak
- Long integration times needed

### Directly Coupled Tile

- Fast peaking signal, pronounced peak
- Short integration times sufficient



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

Motivation: Reasons for Direct Coupling

The Experimental Test Stand

Timing of the Tile Signal

Oetermination of the Tile (Non-)Uniformity



Optimization of the Scintillator Tile Geometry



Summary and Outlook



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

• First test: Direct SiPM coupling to one side of a  $3 \times 3 \text{ cm}^2$  tile

• Recording of 500  $e^-$  signals at 60 × 60 XY-positions on the tile  $\rightarrow$  Pixel Size: 0.5 × 0.5 mm<sup>2</sup>

• Determine mean signal height (MSH) from signal distribution

MSH vs. XY-Position: Observe strong non-uniformity

Modification of the tile geometry necessary to restore uniformity



Scanning Sequence



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

• First test: Direct SiPM coupling to one side of a  $3 \times 3 \text{ cm}^2$  tile

• Recording of 500  $e^-$  signals at 60 × 60 XY-positions on the tile  $\rightarrow$  Pixel Size: 0.5 × 0.5 mm<sup>2</sup>

• Determine mean signal height (MSH) from signal distribution

MSH vs. XY-Position: Observe strong non-uniformity

Modification of the tile geometry necessary to restore uniformity

SIPM

Scanning Sequence





Scanning Sequence

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

#### Uniformity

Tile Modification

Summary

• First test: Direct SiPM coupling to one side of a  $3 \times 3 \text{ cm}^2$  tile

• Recording of 500  $e^-$  signals at 60  $\times$  60 XY-positions on the tile  $\rightarrow$  Pixel Size: 0.5  $\times$  0.5 mm²

• Determine mean signal height (MSH) from signal distribution

MSH vs. XY-Position: Observe strong non-uniformity

• Modification of the tile geometry necessary to restore uniformity





Scanning Sequence

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

#### Uniformity

Tile Modification

Summary



- Recording of 500  $e^-$  signals at 60  $\times$  60 XY-positions on the tile  $\rightarrow$  Pixel Size: 0.5  $\times$  0.5 mm²
- Determine mean signal height (MSH) from signal distribution
- MSH vs. XY-Position: Observe strong non-uniformity
- Modification of the tile geometry necessary to restore uniformity





Scanning Sequence

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



- Recording of 500  $e^-$  signals at 60  $\times$  60 XY-positions on the tile  $\rightarrow$  Pixel Size: 0.5  $\times$  0.5 mm²
- Determine mean signal height (MSH) from signal distribution
- MSH vs. XY-Position: Observe strong non-uniformity
- Modification of the tile geometry necessary to restore uniformity





SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

Motivation: Reasons for Direct Coupling

The Experimental Test Stand

Timing of the Tile Signal

Determination of the Tile (Non-)Uniformity



5 Optimization of the Scintillator Tile Geometry





SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



#### Tile Development

Simple Tile: SiPM coupled to the side

Highly non-uniform

 $\Rightarrow$  Solution: Reduce scintillating material close to SiPM Overall mean of signal height: 13.0 p.e.

 $\Rightarrow$  Solution: Integrate SiPM into the tile



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



#### Tile Development

Integrated Dimple: Height 1 mm, Width 4 mm, Depth 5.5 mm

- $\Rightarrow$  Overall mean: 18.4 p.e. (Diffuse light refraction at dimple)
- $\Rightarrow$  Good uniformity
- $\Rightarrow$  Signal at SiPM position not lower than 13 p.e.
- $\Rightarrow$  Scalable solution for mass production
- (arXiv:1001.4665 [physics.ins-det])



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



#### Tile Development

Transferable concept for the next generation prototype: 3mm Option:  $\Rightarrow$  Overall mean: 13.15 p.e.

 $\Rightarrow$  Signal at Dimple not lower than 8 p.e.



SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary



#### Tile Development

Very small packaging of new MPPCs

 $\rightarrow$  opens up the possibility for new tile geometries:

Aim: Avoid Signal Drop at SiPM Coupling Position

 $\rightarrow$  Very small integration hole

 $\rightarrow$  2 mm deep bottom dimple(spherical drilling head with 5 mm radius) Note: Only tested for 5 mm tiles, SiPM is SMD



## High Precision Uniformity: Side Coupling vs. Integrated Dimple Concept

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

#### Side Coupling

| Part of the Scin-<br>tillator Tile | Deviation of<br>overall mean:<br>13.0 |
|------------------------------------|---------------------------------------|
| 98% (91%)                          | ±20%                                  |
| 94% (81%)                          | ±10%                                  |
| 69% (57%)                          | ± <b>5%</b>                           |

 $\mathsf{Unprecise} \to \mathsf{Cut} \; \mathsf{Tile} \; \mathsf{Edges!}$ 





## High Precision Uniformity: Side Coupling vs. Integrated Dimple Concept

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

#### Side Coupling

| Part of the Scin-<br>tillator Tile | Deviation of<br>overall mean:<br>13.0 |
|------------------------------------|---------------------------------------|
| 98% (91%)                          | ±20%                                  |
| 94% (81%)                          | ±10%                                  |
| 69% (57%)                          | ±5%                                   |

 $\mathsf{Unprecise} \to \mathsf{Cut} \mathsf{\ Tile\ Edges!}$ 

### Side Dimple

| Part of the Scin-<br>tillator Tile | Deviation of<br>overall mean:<br>18.4 |
|------------------------------------|---------------------------------------|
| 99% (90%)                          | ±20%                                  |
| 97% (84%)                          | ±10%                                  |
| 88% (73%)                          | ±5%                                   |





## High Precision Uniformity: Side Coupling vs. Integrated Dimple Concept

SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

#### Side Coupling

| Part of the Scin-<br>tillator Tile | Deviation of<br>overall mean:<br>13.0 |
|------------------------------------|---------------------------------------|
| 98% (91%)                          | ± <b>20%</b>                          |
| 94% (81%)                          | ±10%                                  |
| 69% (57%)                          | ± <b>5%</b>                           |

 $\mathsf{Unprecise} \to \mathsf{Cut} \mathsf{\ Tile\ Edges!}$ 

### **Bottom Dimple**

| Part of the Scin-<br>tillator Tile | Deviation of<br>overall mean:<br>14.5 |
|------------------------------------|---------------------------------------|
| 99.8% (90%)                        | ±15%                                  |
| 96% (82%)                          | ±10%                                  |
| 83% (69%)                          | ±5%                                   |





SiPMs and Scintillator Tiles

C. Soldner

The Test Stand

Tile Modification

Summary





6 Summary and Outlook



### Summary and Outlook

#### SiPMs and Scintillator Tiles

C. Soldner

Motivation

The Test Stand

Timing

Uniformity

Tile Modification

Summary

### Timing of the Tile Signal

Observe directly: Significantly faster tile signal for direct coupling

### Tile Uniformity Study

- SiPM Integration: Tight cell mounting, higher light yield, easy SiPM alignment
- Side Dimple: High Uniformity, easy design, scalable for 5 mm and 3 mm tiles
- NEW: Bottom Dimple: Only possible with very small casing
   → MPPC P-Series available as SMD type
   Avoids signal drop at coupling pos while keeping light yield high
   → Potential for perfect uniformity
   <u>Further improvements under investigation!
   Test concept for 3 mm tiles!

  </u>



| SiPMs and<br>Scintillator<br>Tiles<br>C. Soldner |          |
|--------------------------------------------------|----------|
| Appendix                                         |          |
|                                                  |          |
|                                                  | Appendix |
|                                                  |          |



Signal of Tile & Coincidence Cube simultaneously > 3 p.e.



## Tile Coupling

SiPMs and Scintillator Til<del>e</del>s

C. Soldner

Appendix

### Coupling Properties

| SiPM:          | MPPC25, 1600 Pix, 2 plastic casings                                 |
|----------------|---------------------------------------------------------------------|
| Scintillator:  | Saint Gobain BC-420                                                 |
| Tile Size:     | $3 \times 3 \times 0.5$ and $3 \times 3 \times 0.3$ cm <sup>3</sup> |
| Tile Surface:  | Polished, completely enclosed by 3M mirror foil                     |
| SiPM Coupling: | Direct (Air Gap) fiberless coupling                                 |
| Coupling Pos:  | Center of one side face                                             |





## Quantification of the Uniformity with Area Fractions

SiPMs and Scintillator Tiles

C. Soldner

Appendix



#### Determination of the Area Fractions

• Define the Tile Position (fixed to  $3 \times 3 \text{ cm}^2$ ):

 $\rightarrow$  Note: Measurement unprecise at tile edges Reason: Finite iris size of source casing  $\rightarrow$  conelike  $e^-$  emission

- Determine OMSH: Mean value of all measurement points outside the extreme regions
- Determine Area Fractions: Fraction of all on-tile measurement points lying within a certain deviation region around the OMSH



## Quantification of the Uniformity with Area Fractions

SiPMs and Scintillator Tiles

C. Soldner

Appendix



#### Determination of the Area Fractions

• Define the Tile Position (fixed to  $3 \times 3 \text{ cm}^2$ ):

 $\rightarrow$  Note: Measurement unprecise at tile edges Reason: Finite iris size of source casing  $\rightarrow$  conelike  $e^-$  emission

- Determine OMSH: Mean value of all measurement points outside the extreme regions
- Determine Area Fractions: Fraction of all on-tile measurement points lying within a certain deviation region around the OMSH



## Quantification of the Uniformity with Area Fractions

SiPMs and Scintillator Tiles

C. Soldner

Appendix



#### Determination of the Area Fractions

• Define the Tile Position (fixed to  $3 \times 3 \text{ cm}^2$ ):

 $\rightarrow$  Note: Measurement unprecise at tile edges Reason: Finite iris size of source casing  $\rightarrow$  conelike  $e^-$  emission

- Determine OMSH: Mean value of all measurement points outside the extreme regions
- Determine Area Fractions: Fraction of all on-tile measurement points lying within a certain deviation region around the OMSH



## The Effect of Non-Uniform Cell Readout

SiPMs and Scintillator Tiles

C. Soldner

Appendix

Consequences: Needs further investigation

#### Consequence 1

Distortion of the cell signal distribution

 $\Rightarrow$  Effect on HCAL calibration

#### Consequence 2

Distortion of the energy sum distribution of showers  $\Rightarrow$  Effect on energy reconstruction process

#### Consequence 3

Deterioration of the energy resolution increasing with the particle energy