

AHCAL installation and commissioning experience

Erika Garutti - DESY

AHCAL installation

• Mechanics

- 1 day for heavy crane work: positioning of absorber plates pre-mounted, positioning of rack(s), module boxes, first unpacking

- 2 days for module insertion (with crane) & cabling

- 2 days for installation of trigger system (?) and cabling + MWPC cabling

• Electronics

electronics rack cabled up from DESY

- 1 day for installation of VME cards and cabling + trigger logic
- connections to the control room: 2x 50 m optical fibers (DAQ + CANBUS)
- power supply for triggers and MWPC

• Computers

- installation of computers in control room (DAQ, SC, ana., ...)
- register computers to CERN, connection to dcache
- data storage (disk array ?)
- communication system (video conference, webcams, ...)

CERN 2007

Commissioning DAQ / data transfer

- End of Day 4: first DAQ run
 - check VME alive, CRC noise, data storage, transfer, conversion (Angela)
- End of Day 5: first noise run
 - check VFE electronic noise level, chip alive
 - check TDC readout
 - update online monitor (MWPC mapping)
- Day 6 start Calorimeter commissioning (~3 days)
 - power SiPM, check SiPM alive
 - check LED system
 - first round of calibrations
- At day ~8 parasitic beam request for few hours
 - commission trigger system
 - commission MWPC

Beam instrumentation description

TOP

News on the beamline

- 1) beam info from CERN database available from run 330411
- 2) Cherenkov operated for e/π and π/p separation
- 3) 3 x/y pairs of MWPC with double readout
- 4) 10x10 cm trigger only (no 3x3)
- 5) amplitude r/o of 1cm thick scint. counter (20x20 inner veto)
 - + outer veto with 20x20 cm hole to tag double particle

The inner veto counter

E. Garutti

CERN 2007

5

The outer veto

outer veto rate: $(C_1 \parallel C_2 \parallel C_3 \parallel C_4) \& (T_1 \& T_2)$ normally < 1-2%

Clean-up examples

events cut by no-outer-veto OR

maybe interesting event selected (?!) with outer-veto

CERN 2007

events cut by inner-veto Ampl<7000 ADC ch.

* all units in mm E. Garutti

MWPC alignment

TOP VIEW (radial)

SIDE VIEW (hauteur)

XWCA XWCA

CERN 2007

alignment performed by CERN survey group

cable mapping

MWPC	TDC#	TDC channel#
1-left	0	0
1-right	0	1
1-down	0	2
1-up	0	3
2-left	0	4
2-right	0	5
<mark>2-down</mark>	1	1
<mark>2-up</mark>	1	0
3-left	1	2
3-right	1	3
3-down	1	4
3-up	1	5

Commissioning DAQ / data transfer

- End of Day 4: first DAQ run
 - check VME alive, CRC noise, data storage, transfer, conversion (Angela)
- End of Day 5: first noise run
 - check VFE electronic noise level, chip alive
 - check TDC readout
 - update online monitor (MWPC mapping)
- Day 6 start Calorimeter commissioning (~3 days)
 - power SiPM, check SiPM alive
 - check LED system
 - first round of calibrations
- At day ~8 parasitic beam request for few hours
 - commission trigger system
 - commission MWPC
 - see first events

Safety inspection + survey alignment CERN 2007

Detector performance (2007)

Deline monitor on the first day of beam on Tex 331298.9 Event 8377 Tex 50 Exercit 21142 range Tex 50 Exercit 211

Total data taking time	7 weeks
SPS uptime	80.7 %
Beam controlled by H6B	76.1 % (94.4 % of uptime)
DAQ on beamData	60.2% (79.1 % of beam in H6B)
DAQ on calibration	7.8 %

E. Garutti

CERN 2007

DAQ performance

Commissioning with beam

The first steps with beam:

- Trigger commissioning
- Hold scan → fix latency of chip w.r.t. beam trigger (changes with new trigger plates + cables)
- Muon calibration \rightarrow ~2 M muons needed (100x100 cm² trigger ?)
- (Adjustment of working point ?)

~ 4(-6) days

- → Start of physics program
- → In addition ~ 30 min LED calibration runs every ~ 8 h (3 time /day)

Shift organization

- 2 people on shift minimum:
 - HCAL expert
 - DAQ / beam instrumentation
- 3 shifts / day
- Documentation available (shift guide)
- 2 or 3 shift training / week (for new comers)
- Expert on call (can the expert be remote?)
 - positive experience with remote control room & DAQ remote expert

Working point optimization

TB 2006 optimisation

Overall Calorimeter Optimisation

applied overall HV correction

compensation of temperature increase and HV drop

- used average mip dependence no new calibration used
- single channel DAC correction only in case of very high signal due to long-discharge applied

E. Garutti

CERN 2007

MIP calibration

- Time schedule:
- 1 week installation + 1 week commissioning proved to be sufficient
- Golden numbers for the run plan:

SPS uptime ~ 80% detector uptime ~ 100% / detector on physics data ~80% data rate ~60Hz (beam run)

 Open issues: trigger system?
 tracking system? → integration into DAQ

Cell response equalization with MIP

μ track in HCAL

Module:29_chip:0_channel:1

Using pion shower select MIP stubs using the high granularity of the HCAL

Luminosity requirement for in-situ calibration with MIP stabs from jets (ILC detector)

	Luminosity at 91 GeV	Luminosity at 500 GeV
layer-module to 3% to layer 20	1 pb^{-1}	$1.8 { m ~fb^{-1}}$
layer-module to 3% to layer 48	$10 {\rm \ pb^{-1}}$	$20 { m ~fb^{-1}}$
HBU to 3% to layer 20	20 pb^{-1}	$36 {\rm ~fb^{-1}}$

mode Right 2000 obtained from $Z_0 \rightarrow \mu\mu$ events

SiPM response function

- assume two pixel types (use sum of two exponentials)
- $A_{SIPM} = A_{max} \cdot \left(r_1 \cdot \left(1 \exp\left(\frac{-A_{lin} \cdot s_1}{r_1 A_{max}}\right) \right) + r_2 \cdot \left(1 \exp\left(\frac{-A_{lin} \cdot s_2}{r_2 A_{max}}\right) \right) \right)$ Parametrisation:

all curves for ~8000 SiPM measured (in ITEP) before installation on tile

20

Importance of monitoring/calibration

SiPM response is non-linear

Redundant calibration system delivers: -Low intensity light for SiPM Gain calibration -High intensity of light for saturation monitoring -Medium intensity light for electronics intercalibration

Light intensity for 8000 channels within factor 2 >94% calibration efficiency on full calorimeter

SiPM gain calibration

Gain extracted from a multi-Gaussian fit to LED calibration data

- ~15 min data taking necessary for one gain scan
- Repeated ~every 6-8h during data taking
- Efficiency (#ch. calibrated):
- CERN 96.4%, FNAL 97% → Mainly quality of LED system

CALCO In-situ check of saturation point The saturation level is independent on bias voltage and stable in time (no ageing effects)

Saturation point measured on SiPM installed on tile is ~80% lower than on bare SiPM (ITEP measurement) →Explained by geometrical match of 1mm & fiber to 1mm² SiPM E. Gardunater verified in the lab at ITER with measurements on tile

Figure of merit: light yield

Adjustment requires the knowledge of SiPM response - T & V -

Remaining discrepancy due to different MIP sources ---> to be validated with MC

MIP: muon 80 GeV (CERN), muon 32 GeV (FNAL), Sr-source (ITEP) E. Garutti CERN 2007 24

predictions of voltage adjustment effects match measured resultsE. GaruttiCERN 2007

The modular run plan

- Based on last year experience the run plan has to be flexible!
- The run plan will evolve depending on beam conditions / agreements with other users / other unpredicted constraints
- The run plan is defined in packages
- We identified two class of priorities for energies and angles:
 - Priority I
 - Low E: 6, 10, 15, 20 GeV
 - High E: 20, 30, 50, 80 GeV
 - Angles: 0, 20, 30 deg
 - Priority II
 - Low E: 8, 12, 18 GeV
 - High E: 25, 40, 60, 120 GeV
 - Angles: 10, 15 deg

- Low and high refer to the energy of the secondary beam required to cover the points (<120 or >120 GeV)
- If more time available at one given angle, high statistic has priority over more energy points
- Note: beam tuning has not been taken into account in the time estimate

Low energy packages

- LE1) Combined physics package (Pr I)
 - $-\pi$, 1M evts, 6/10/15/20 GeV, 0 deg
 - $-\,\pi,\,500k$ evts, 6/10/15/20 GeV, 20, 30 deg
 - Duration: ~5 days
 - Minimum required for combined physics run
- LE2) ECAL physics package (Pr I)
 - e, 1M evts, 6/10/15(/20) GeV, 0 deg
 - Duration: ~1.5 days
 - Alignment; repeats last year's conditions
- LE3) PCB irradiation (Pr I)
 - e, 1M evts, 10/50 GeV, 0 deg
 - Duration: ~1 day
 - Beam positioned on ASIC chip; position scanning

CALICE @ CERN 2007

Last year we did great !

2007 has to be greater !!!

CERN 2007