

Nikolay Solyak Fermilab

ART review, March 2, Fermilab

Global Design Effort

1

Schematic of the 500 GeV Machine

3/2/2010

All ILC magnets

Magnet Type	Gran	d Totals	Sou	irces	Dam Riı	ping ngs	2 RTML	2 Linacs	2 BeamDel
	Styles	Quantity	e-	e+	e-	e+	Qty	Qty	Qty
Dipole	22	1356	25	157	134	134	716	0	190
Normal Cond Quad	37	4182	93	871	823	823	1368	0	204
Sextupole	7	1050	0	32	504	504	0	0	10
Normal Cond Solenoid	3	50	12	38	0	0	0	0	0
Normal Cond Corrector	9	4047	0	871	540	540	2032	0	64
Pulsed/Kickers/Septa	11	227	0	19	46	46	52	0	64
NC Octupole/Muon Spoilers	3	8	0	0	0	0	0	0	8
Room Temp. Magnets	<i>92</i>	10920	130	1988	2047	2047	4168	0	540
Supercond Quad	16	715	16	51	0	0	56	560	32
Supercond Sextupole	4	12	0	0	0	0	0	0	12
Supercond Octupole	3	14	0	0	0	0	0	0	14
Supercond Corrector	14	1374	32	102	0	0	84	1120	36
Supercond Solenoid	4	16	2	2	0	0	8	0	4
Supercond Wiggler	1	160	0	0	80	80	0	0	0
Supercond Undulator	1	42	0	42	0	0	0	0	0
Superconducting Magnets	43	2333	50	197	80	80	148	1680	<u>98</u>
Overall Totals	135	13253	180	2185	2127	2127	4316	1680	638

Table 1: ILC RDR Magnet Summary Table (250GeV X 250GeV – 14 December 2006)

SUPERCONDUCTING MAGNET NEEDS FOR THE ILC*, J. C. Tompkins, VI. Kashikhin et.all, PAC07

İİĻ

Number of SC quads (RDR and SB2009)

RTML (5-15 GeV)	# CM	# Quad
e ⁻ /e ⁺ Bunch compressor	45 / 45	17/17
Total	90	34
Main linac (15-250 GeV)	# CM	# Quad
Electron Linac*	846	282
Positron Linac	834	278
Overhead (3.5%)	30+30	10+10
Total	1680+60	560+20

* Incl. 12 CMs to recover 3.23 GeV energy losses in undulator Note: each quad is combined with vertical corrector, every second quad has also horizontal corrector

- Proposed changes in SB2009 lattice:
 - Single stage compressor: 6 CM's (quad in each)
 - Post-acceleration 5 → 15 GeV is part of ML
 - Total number of CM's is reduced by 3, but # quads increases +1

iii,

RDR Main Linac: 9-8-9 Configuration

modules					without	with	without																	
					quad	quad	quad		RF uni	t					hn_{-}	ro		Ilar	n D	D		741	ric	0
RF unit (leng	ths in	meter	s)		12.652	12.652	12.652		#####	(lengths	s in meter	s)		INC	- ווע		yu	IUI		Ur		ווג		C
					three mod	dules		27 ()FC -															
					\sim	\neg		<u> </u>	50 -															
						Y																		
					RF unit	RF unit	RF unit	RF unit	end bo	andard	string (4	4 RF unit	ts)		Ex	tra s	SDé	ace	~2.3	5 n	ı be	<i>twe</i>	en	
string (vacuu	m leng	gth)			37.956	37.956	37.956	37.956	2.500		154.3		4				1	1						
					four RF u	inits (12 m	odules) plu	us string ei	nd box							stri	na	S (6	ever	'v~	-155	(m)		
					or, three l	RF units (9	9 modules)) plus strin	g end bo	yx short s	tring (3 R	F units)					9	~ ` `		/				
					\land					/	116.4													
							\mathbb{N}																	
				warm			Ŷ			warm					1	C'azta		mac	10 -	10	65	m .	for	
				drift service			X N		service	drift	service					SXU	d S	pac	<i>:e~</i>	14.	00.	[[[]]]	.01	
				space end bo	K				end bo	< space	end box			-		TAZA	rm	SA	rtion	nc l	heti	Nee	n	
Main Linac C	ryoge	nic Ur	nit	7.652 2.500		N SI	rings		2.500	7.652	2.500	strings	etc			wa.		SCC				vee	<u></u>	
(CU)					12 modul	es plus on	e end box	per string	x N strin	gs						Cr	VO	-uni	its	(~	2.4	km		
					(One ser	vice box re	places a s	tring end t	JQX.)	,		/				-				•				
									\sim	\frown														
				Std cryogen	ic unit len	gth = Nx	string len	2471.7		12.652	(set as r	nodule slo	t length)											
				RTML BC2																		space		
		BC1		3 strings				warm			warm			und	ulator re	gion	13	strings	warm			for		
	SC	3	warm	1 hort stri	n warm	10	strings	drift	16	strings	drift	14	strings	warm	supercon	warm	2	short stri	drift	16	strings	3.50%	warm	
SC	lenoids	module	e space	15 RF unit	s space	40	RF units	space	64	RF units	s space	56	RF units	space	magnets	space	58	RF units	space	64	RF units	3 more	space	Source
Electron lina	:		~200 m	581.8	~300 m	154	45.7	7.652	24	71.7	7.652	216	53.0	600	290.0	367	22	41.4	7.652	24	71.7	368.6		BDS
																								DR
				~1300 m		·	1549.6	→ ←	24	79.3 -		- 305	56.9 —			•		2612.3	⊢	-24	175.5 →	400.0		
			~2	840 m total crv	/oaenic un	it lenath v	vith RTML				5536.2								5087.8	_				
	1					1		-		approx	5540							approx	5100		, ,			
Cryogenic pl	ant loc	ations						Shaft 7		sh	aft snar	na			Shaft 5			sh	aft snac	ina	Sh	aft 3		
Cryogenic pi		anona		(start	of main li	inac)	and a	nogonia	nlante		an spa	, ing		and a		nlante		311	an spac	and cr	vogonia	nlante		
				(start		illac)		yogenic		<mark>9</mark>					yogenic	plants					yoyenic	, piants function ((m = =)	
																		-			(end o	r main i 1	inac)	
				CU-7)				CU-7	a		CU-5b					CU-8	ba		CU-3	a		<u> </u>	
Cryogenic loads				168 modules and a few SC			C solenoids		192	modul	es	168	module	s			174	module	es	192	modul	s	L	
				including R	TML and	500 m o	f transfe	er lin¢s				plus un	dulator				inclu	ding 12	energy					
												magnet	ts				reco	very mo	duleb					
									T 1	21/3.5	meters	s main li	nac inclu	iaing 12	257 m foi	r undula	ator -					1		

RDR Main Linac Lattice: Curved linac

Lattice in ML (5 - 250 GeV per linac)

- 1Quad/3CM (9-8-9)
- Quad Spacing ~38m
- Curved linac
- Phase advance x/y = 75°/60°
- matching sections require ~10% higher quad strength

Energy upgrade scenario (250 → 500 GeV per linac)

- Same layout 1Q / 3CM (FFODDO)
- Same Quad strength
- Half-phase advance: x/y = 37°/30° for upgraded HE linac
- Stronger correctors ~10% (for the same vertical curvature)

Main Linac Type-4 Cryomodule

Combined or stand alone correctors (Quad center stability issues) ?

3/2/2010

Main Linac Quadrupole & Correctors

Overview

- Located at the center of a cryomodule
 - Operated at 2K
 - Quadrupole, dipole correctors, and BPM in one assembly
- Maximum integrated strength ~36 T
 - ~54 T/m maximum gradient
- Beam based alignment
 - Decrease gradient by ~20%, measure beam position in adjacent BPM while increasing field in steps
 - Critical requirement: quadrupole center must be stable to ~1µ over current/field range
- Challenges
 - · Center stability, reproducibility with field strength
 - Mechanical
 - Hysteretic effects due to magnetization currents
 - Stray field at adjacent cavities
 - < 10 μ T when cold, < 1 μ T warm

J.Tompkins, PAC'07

CIEMAT Quadrupole w/ Dipole Windings

- CIEMAT (Spain) quadrupole prototype for Tesla/XFEL
- Tests at DESY revealed gradient dependence on corrector current

quadrupole gradient	63.5 T/m
quadrupole current	100 A
dipole field	0.11 T
dipole current	40 A
max. field at conductor	3.22 T
field length	0.52 m
alignment error (angle)	0.1 mrad rms

 Center stability study to be done at SLAC this summer

Quad Strength

- Quad strength is defined by quad spacing, required phase advance (μ) and beam energy.

$$B' \cdot L = \frac{Energy}{e} \cdot \frac{2}{s} \cdot \sin(\frac{\mu}{2}) = \frac{Energy(GeV)}{0.3} \cdot \frac{2}{s} \cdot \sin(\frac{\mu}{2}) \quad [Tesla]$$

- For flexibility quad should provide optics with phase advance µ=90° up to final energy E=250 GeV (~20%)
- Extra strength will need for matching.
- Lattice with quad spacing s = 38 m (9+8+9 cavities in RF unit)
- L_{quad} (effective) = 0.626 m (in TESLA design)

$$B' \cdot L = \frac{250}{0.3} \cdot \frac{\sqrt{2}}{38} \approx 31 \ T$$
 or $B' \left[\frac{T}{m}\right] \approx 50 \cdot \left[\frac{Energy}{250 \ GeV}\right]$

Final choice for gradient: $B'_{\text{max}} L \approx 36 T$, $B'_{\text{max}} \approx 60 [T/m]$

- Allow to tune up to $\mu = 90^{\circ}$ phase advance @ 250 GeV
- Additional ~ 20% overhead for lattice matching

IL

- Correctors are required to:
 - bend beam in vertical plane to transport beam along earth curvature
 - Correct beam (quad) offsets Δy

$$(H \cdot L) = \frac{Energy \,[GeV]}{0.3} \cdot \left[\frac{\Delta y \cdot \sin(\mu/2)}{s} + \frac{s}{R}\right] \, \left[T \cdot m\right]$$

where *s* - quad spacing, *R* = 6400 km - Earth radius.

- Vertical corrector in each quad
- Horizontal corrector in every second quad package
 - Note: In horizontal plane second term is equal zero (no curvature)

İİL

Corrector strength

Maximum required strength of corrector is defined from the following assumptions:

• Energy = 250 GeV; $\mu = 90^{\circ}$; (RDR: $\mu_x / \mu_y = 75^{\circ}/60^{\circ}$)

- Quad offset: rms σ = 0.3 mm; (3 $\sigma \approx 0.9$ mm)
- Max beam offset ± 3 mm at energy 250 GeV

$$(H \cdot L) = 0.075 \quad [T \cdot m]$$

(<10% of strength needs to deflect beam along the Earth curvature)

Max current: (at 250 GeV) = 40A Stability: same as for quads. Field change: by a few percent in 0.2 s, every 0.2 s Change step: (equivalent ~1µm of quad center motion)

2.e-6 T*m at 15 GeV; 3.e-5 T*m at 250 GeV

1. Vertical position change due to magnet strength error.

• **Relative magnet strength** < 2.e-5 \rightarrow 0.14* σ rms beam offset in IP. (Random 0.14 σ offset of each beam will make average position offset 0.2 σ between two beams at IP, which will decrease luminosity about 3%, without beam-beam force.)

• Very tight but relevant only for **fast jitter**, faster than orbit feedback (~1 ms)

2. Emittance increase due to magnet strength error.

Relative magnet strength < 1.7e-5 → Δε/ε₀ < 0.063
(Emittance increase by 0.063 will decrease luminosity about 3%, without beambeam force.)

Alignment tolerances (installation)

Alignment tolerances are defined by CM design (DESY):

- Alignment strategy (state-of-the-art) during assembly
- Stability of the of the components during cool down/warm up
- Reproducibility, Alignment control system

İİL

Quad center position stability

- Installation alignment of beamline components: Quad, cavities, BPM's ~300 mkm/300 mrad
- Few steps of Beam based alignment

In first step:

- Magnet shunting (-20% in field) to define BMP misalignment ~ 1-2 μm
 - Required magnet center motion stability below 2 µm
- Ballistic alignment (BA) switch field off
- Strength changes within a few sec.

2nd step:

- Dispersion Free Steering
- Dispersion matching steering
- Dispersion/wakefield Bumps
- Etc...

Tolerance	Vertical (y) plane
BPM Offset w.r.t. Cryostat	300 µm
Quad offset w.r.t. Cryostat	300 µm
Quad Rotation w.r.t. Cryostat	300 µrad
Structure Offset w.r.t. Cryostat	300 µm
Cryostat Offset w.r.t. Survey Line	200 µm
Structure Pitch w.r.t. Cryostat	300 µrad
Cryostat Pitch w.r.t. Survey Line	20 µrad
BPM Resolution	1.0 µm

Power supplies

İİL

Switch-mode Bulk Power Supply

- Line to load V matching transformer is downstream of high frequency > 20kHz switching element. Small size and light
- Each 30V, 400A 12kW
- Recommended

ILC Development at SLAC by Paul Bellomo et. all

ATF2 (commissioned in 2008) – prototypes ILC

- 38 power supplies (1.5 kW to 6 kW),
- currents from 50 A to 200 A, voltages 30 V
- uses N+1 redundancy, with 50A power modules
- current stability 10-1000 ppm

PS for SC magnets:

- 100 A current leads
- Low losses
- Cheap

Quad specs

- Dimensions:
 - Beam pipe diameter = 78 mm; inner coil diameter ~ 90mm
 - Quad total length (z- slot) ≤ 0.66m (TESLA 0.666 m)
- Integrated gradient: scales with energy
 - B'*L < 36 T (B' < 60 T/m, if L=660mm) 1Q/3CM lattice at 250 GeV</p>
- Low peak current: 100A (40 A for trim coil)
 - Optimal for DC power supply (Paul Bellomo, SLAC)
 - reduce heat load from current leads (each quadrupole is powered separately), available and cheap current leads.
- Stability requirements:
 - faster than orbit correction (<1 ms) < 2.e-5
 - slower than orbit correction (>0.2 s) < 1.e-3
- Higher harmonic tolerance: not studied yet in details
 - Skew quad < 3.e-4 (at reference radius 5mm)
 - High harmonics < 1.e-3 (at r = 5mm)</p>
 - Fringe field in cavity region < 10 μ T (at r=35mm, z~650 mm from quad center. Cavity has magnetic shielding

Two families of quads?

- ML quadrupoles should cover broad energy range: from 5 GeV to 250 GeV (factor of 50).
- It seems beneficial to have at least two families of quadrupole packages, optimized for low and high energy part of the Linac (performance and cost).
 - Low energy: 5 (40÷50) GeV
 - High Energy: (40÷50) 250 GeV
- Both families may use similar power supply and control electronics
- Note: Requirements for low energy quads are scaled with energy, where it is necessary

Magnets for High Energy (50-250 GeV)

Table of Specifications (Summary)

Quad	Beam pipe diameter	78	mm
	Inner coil diameter	90	mm
	Coil Length	< 660	mm
	Integrated strength	36	Т
	Gradient, max	60	T/m
	Operating T	2	К
	Nominal Current	100	Α
	Max Field @ conductor	3.6	Т
Field quality	Skew component	3.e-4	at
	Higher harmonics*	1.e-3	<i>r = 5mm</i>
Dipolo (trim) ocil	Longth (if concrete)	- 250	mm
	Length (Il Separate)	< 300	
	Field integral	0.075	T∙m
	Max Field at conductor	3.6	Т
	Max Current	40	Α
Alignment tolerances	Center quad wt. pipe	0.3	mm
(installation)	Angle (Pitch, Yaw, roll)	0.3	mrad
Alignment stability	Magnetic center motion (over 20% field variation)	2	mkm
	Pitch, yaw, roll (magnetic axis)	< 0.3	mrad
(Sama anaga a	ra applied from TESLA TOP as a	roforopool	

(Some specs are copied from TESLA TDR as a reference)

ijĻ

SC magnets for Low-energy (5-50 GeV)

Table of Specifications (Summary)

Quad	Beam pipe diameter	78	mm
Guuu	Inner coil diameter	90	mm
	Coil Length	< 660	mm
	Integrated strength	7	Т
	Gradient, max	12	T/m
	Operating T	2	Κ
	Nominal Current	100	Α
	Max Field @ conductor	3.6	Т
Field quality	Skew component	3.e-4	at
	Higher harmonics*	1.e-3	r = 5mm
Dipole coil	Length (if separate)	< 350	mm
<u></u>	Field integral	0.015	T∙m
	Max Field at conductor	3.6	Т
	Max Current	40	Α
Alignment tolerances	Center quad wt. pipe	0.3	mm
(installation)	Angle (Pitch, Yaw, roll)	0.3	mrad
Alignment stability	Magnetic center motion (over 20% field variation)	2	mkm
	Pitch, yaw, roll (magnetic axis)	< 0.3	mrad

Tolerances for higher harmonics are probably looser. Need to check.

ΪĿ

Remarks from J.Tompkins (2007)

- <u>Stability and Reproducibility</u>: The center of quadrupoles and higher order elements must remain stable over time and with changes in magnet strength. The field obtained at a given current must also be stable with respect to the magnet powering history. These requirements translate into mechanical stability in all magnets, controlling hysteretic behavior in the magnet steel, and magnetization current effects in superconducting magnets.
- <u>Reliability</u>. A mean time between failures (MTBF) of the order of >10⁷ hours is required for individual magnets to meet the overall availability assigned. To achieve this value for MTBF, every aspect of magnet design, fabrication and operation will be scrutinized in a series of MEA (Failure Modes and Effect Analysis) studies for a few representative magnets.

- Major specifications for ILC Main Linac Quadrupoles and Correctors are formulated, based on beam physics studies.
- Linac SC magnets with required parameters are feasible. Two prototypes built and tested
 - SC quad built at CIEMAT and tested at SLAC
 - FNAL prototype
- Proposed splittable design for ML magnet has advantages. R&D and prototyping are needed to confirm performance and efficiency.

• <u>Main issues:</u>

- Optimal quad package configuration
- Integrated field range (high:low)
- Magnetic center motion stability in range of –20% field change
- Combined or stand alone correctors
- Fringing fields in SCRF areas from magnet package