

Requirements for LLRF Control

LLRF Lecture Part1 S. Simrock, M. Grecki ITER / DESY

- CM energy: 500 GeV. Range 200 500 MeV.
 Upgradeability to 800 GeV
- Luminosity and reliability of the machine should allow $L_{eq} = 500 \text{ fb}^{-1}$ during first four years
- Energy scans between 200 GeV and 500 GeV.
 Energy change should take less than 10% of data taking time.
- Beam energy stability <u>and</u> precision should be below the tenth of percent level

- e⁻ and e⁺ source
- Injectors

ΪĿ

- Damping Rings
- Main Linacs

Crab cavities at IP

RF Station at Main Linac

116

S. Simrock & M. Grecki, 5th LC School, Switzerland, 2010, LLRF & HPRF

RF System Architecture

İİL

S. Simrock & M. Grecki, 5th LC School, Switzerland, 2010, LLRF & HPRF

LLRF System Context

· Interacting subsystems and actors to LLRF

ic

S. Simrock & M. Grecki, 5th LC School, Switzerland, 2010, LLRF & HPRF

ir

total number of klystrons / cavities per linac	~ 280/ 7,280
per rf station (klystron):	
# cavities / 10 MW klystron	~ 26
<pre># of precision vector receivers (probe, forward, reflected power, reference line, beam)</pre>	~78
# piezo actuator drivers / motor tuners	~ 26/26
# waveguide tuner motor controllers	~ 26
# vector-modulators for klystron drive	1
Total # of meas. /control channels per linac	~22,000 / ~22,000

LLRF System Requirements Overview

- Maintain Phase and Amplitude of the accelerating field within given tolerances
 - up to 0.07% for amplitude and 0.24 deg. for phase
- Minimize Power needed for control
- RF system must be reproducible, reliable, operable, and well understood.
- Other performance goals
 - build-in diagnostics for calibration of gradient and phase, cavity detuning, etc.
 - provide exception handling capabilities
 - meet performance goals over wide range of operating parameters

LLRF System Requirements – Field Stability

- Derived from beam properties
 - energy spread
 - Emittance
 - bunch length (bunch compressor)
 - arrival time
- Different accelerators have different requirements on field stability (approximate RMS requirements)
 - 1% for amplitude and 1 deg. for phase (example: SNS)
 - 0.1% for amplitude and 0.1deg.for phase (linear collider)
 - up to 0.01% for amplitude and 0.01 deg. for phase (XFEL)
- Note: Distinguish between correlated and uncorrelated errors

Field Stability Requirements for Main Linac

TABLE 3.9-1

Summary of tolerances for phase and amplitude control. These tolerances limit the average luminosity loss to <2% and limit the increase in RMS center-of-mass energy spread to <10% of the nominal energy spread.

Location	Phase (degree)		Amplitude (%)		limitation
	correlated	uncorr.	correlated	uncorr.	
Bunch Compressor	0.24	0.48	0.5	1.6	timing stability at IP
					(luminosity)
Main Linac	0.35	5.6	0.07	1.05	energy stability ${\leq}0.1\%$

- Field stability requirements (@ ML and BC) are < 0.24deg. for phase and 0.07% for amplitude
- In order to satisfy these requirements, feedback (FB) with proper feed forward (FF) control will be carried out.

- Measurements
 - Signals

IIL

•

- Conditions
- Components characterization
- Control actions
- Diagnostics
- Generate events
- Exception detection and handling
- Automation (of operational procedures)

- Reliability
 - not more than 1 LLRF system failure / week
 - minimize LLRF induced accelerator downtime
 - Redundancy of LLRF components
- Operability
 - "One Button" operation (State Machine)
 - Momentum Management system
 - Automated calibration of vector-sum
 - ...
- Reproducibility
 - Restore beam parameters after shutdown or interlock trip
 - Recover LLRF state after maintenance work

Non-Functional Requirements (C'tnd)

- Maintainability
 - Remote diagnostics of subsystem failure
 - "Hot Swap" Capability
 - Accessible Hardware
- Well Understood
 - Performance limitations of LLRF fully modelled
 - No unexpected "features"
- Meet (technical) performance goals
 - Maintain accelerating fields defined as vector-sum of 26 cavities within given tolerances
 - Minimize peak power requirements

In this part, we have learnt:

- The basic ILC requirements
- The RF system architecture and LLRF context
- LLRF functional and non-functional requirements

[1] ILC_RDR_Volume_3 – Accelerator

[2] The ISO/IEC 9126 Standard for the evaluation of software quality
 [3] Tim Weilkiens. Systems Engineering With SysML/UML:
 Modeling, Analysis, Design. Elsevier Science & Technology Books,
 2008