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Introduction to the Cavity Model
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Context of the Cavity in the Control Loop

The cavities are the plant to be controlled by the LLRF 
system.

The cavities are driven by the RF power amplifiers such 
as klystron. 

Normally, the cavities are equipped with probes for 
picking up the RF signal to be measured by the field 
detector.
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Motivation for Cavity Model Study

• Understand the property and behavior of the cavity
• Model the cavity and the LLRF control system for 

algorithm study and controller design
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9-Cell Cavity

Unloaded Q0
1036 Ωr/Q
1.98 %Cell to cell coupling
70 mmAperture diameter 
1036 mmEffective length

Working 
Mode: 
TM010

Parameters 
for TESLA 

cavity

http://mskpc14.desy.de/wiki/images/a/a6/Cavity-Picture6.jpg�
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Equivalent RLC Circuit Model

The 9-cell cavity is modeled with nine magnetically 
coupled resonators.
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Pass Band Modes of the 9-Cell Cavity

• π mode is selected for accelerating the beam
• 8π/9 is close (800 kHz away) to the operation mode, 

which may influence the stability of the acc. field
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Pass Band Modes of the 9-Cell Cavity

• Arrows show the direction and 
amplitude of the electric field 
component along the axis

• π mode is used for beam 
acceleration 
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Principle of Beam Acceleration with π Mode

Maximum acceleration voltage
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Cavity Model for the π Mode with RF Driving

• The whole 9-cell cavity is modeled as an single RLC circuit for the 
π mode

• Klystron is modeled as a constant-current source
• Power coupler of the cavity is modeled as a lossless transformer

1:n
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View from Different Reference Plane

View from the power 
transmission line side.

Used to study the power 
transmission.

View from cavity side of 
the transformer.

Used to study the cavity 
behavior as a differential 
equation.
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Baseband Equations for Cavity Model
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Differential Equation of the Circuit Model
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• The equation is 
described with circuit 
parameters (R, L, C), 
which need to be 
mapped to the 
measurable cavity 
characteristics (quality 
factor, bandwidth, 
shunt impedance …)
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Relationship between Circuit Parameters and 
Cavity Characteristics

• Resonance frequency

• Quality factor and input coupling factor

• Shunt impedance r and normalized shunt impedance (r/Q)
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TESLA Cavity

(~1554MΩ)
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Differential Equation of the Cavity

2
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dt R C dt LC C dt
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dt
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• The half bandwidth of the cavity is defined as

• The cavity voltage Vc and driving current I are always 
sine signals with phase and amplitude modulation

cavity  theofconstant   time theis   ,1
2

0
2/1 τ

τ
ωω ==
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Differential Equation of the Envelope

When studying the cavity behavior with klystron power and beam 
current, the carrier frequency term is not interested. The base band 
(envelope) equation will be used.

tjtj
cc eIIeVV ωω


== ,Define the phasor for sine signals:

( ) IRVj
dt
Vd

Lc
c




2/12/1 ωωω =∆−+Cavity baseband 
equation:
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Detuning is defined as: ωωωω <<−=∆ 0

Assumptions:
Valid for high Q 

cavities
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Variations of the Cavity Equation

• Voltage driven cavity equation

• For superconducting cavity 

So the cavity equation can be simplified as

( ) forc
c VVj

dt
Vd 


1
2 2/12/1 +

=∆−+
β
βωωω

1>>β

( ) forc
c VVj

dt
Vd 


2/12/1 2ωωω =∆−+

Valid for both 
normal-

conducting and 
superconducting 

cavity

Valid for cavities 
with large coupling 
factor, such as the 
superconducting 

cavity
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State Differential Equation of the Cavity

• Separate the real and imaginary parts of the complex cavity 
equation, we will get the state differential equation









+
















−∆
∆−−

=








i

r
L

ci

cr

ci

cr

I
I

R
V
V

V
V

dt
d

2/1
2/1

2/1 ω
ωω
ωω

ircicrc jIIIjVVV +=+=


    ,

( ) IRVj
dt
Vd

Lc
c




2/12/1 ωωω =∆−+

• State equation is suitable for digital simulation and implementation, and can 
fit to the framework of modern signal processing and control theory

• Complex equation is suitable for analysis
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Steady State Behavior of the Cavity – Resonance 
Curves

• Steady State: no transient, the item with time derivative equals to zero
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Steady State Behavior of the Cavity – Resonance 
Circle

ψψ =∠−∠= IVIRV cLc


         ,cos
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Transient Behavior of the Cavity
• Transient behavior: step response of the cavity 
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Transient Behavior of the Cavity
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Driving Term in Cavity Equations
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Typical Parameters in Pulsed System
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Relationship of Driving Term in Cavity Equation to 
Klystron Power and Beam Current

Remind the cavity baseband equation:
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The driving term is the superposition of the generator current and 
beam current:

• The generator current is a function of the klystron power, cavity and 
transmission line impedance, and input coupling factor

• The beam current is a function of bunch charge and bunch repetition rate
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During steady state, when there is no beam and detuning                     
(Ohm’s law), so

Relationship of the Generator Current and Klystron 
Power
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Cavity equation driven by 
klystron power and beam:
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Relationship of the Beam Current and Average DC 
Beam Current
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A single bunch is described by a Gaussian curve:
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Cavity equation driven by 
klystron power and beam:
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Relationship of the Beam Current and Average DC 
Beam Current (cont’d)

Fourier decomposition of bunch train:
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Beam Phase Respect to RF

Energy gain of single particle: bcVE ϕcos


=∆

Cavity voltage changing with time

bϕ

bϕ cV


,

Beam Phase Definition: ( ) 
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dt
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+=∆−+ 2/12/1 ωωωWith items in cavity equation:
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Beam Loading in the Cavity

• Beam loading is 
significant in 
superconducting cavities 

• Beam induced voltage 
cancels the exponential 
increase of the generator 
induced voltage, 
resulting in a flattop

RF generator induced voltage

Beam induced voltage

On-crest acceleration
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Beam Injection Time for Flattop

If the beam is accelerated on-crest and there is no detuning, 
the beam injection time for flattop is
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For TESLA cavity,
tinj = 734μs * ln(16mA/8mA) = 510 μs
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RF Power Dissipation and Reflection 
of a Cavity
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RF Power Profile for Cavity Operation

• Filling Stage: cavity 
voltage increases from 
zero with the cavity 
driving power

• Flattop Stage: cavity 
voltage keeps constant 
for beam acceleration, 
which is a nearly steady-
state condition
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RF Power Dissipation and Reflection 
at Filling Stage
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RF Power Dissipation at Filling Stage

• Filling of cavity: fill the cavity to a desired voltage V0 from 0 within 
a period of Tfill

• Factors influence the required filling power
– Desired cavity flattop voltage (V0)
– Filling time (Tfill)
– Loaded Q of cavity (QL)
– Detuning of cavity (Δω)

• From the cavity transient behavior, the RF power required for 
filling stage is
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Filling Power for Different Loaded Q and Detuning
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RF Power Reflection at Filling Stage

• Reflection power can 
be calculated via the 
relationship of

• At the beginning of the 
RF pulse, the cavity 
voltage is zero, so the 
reflection power equals 
to the forward power, 
and when the cavity 
voltage increases, the 
reflection power 
decrease
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RF Power Dissipation and Reflection 
at Flattop Stage
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RF Power Dissipation at Flattop Stage

• Flattop of cavity: keep the cavity voltage to a desired 
value V0 in presence of beam current Ib

• Factors influence the required flattop power
– Desired cavity flattop voltage (V0)

– Beam current and beam phase (Ib)

– Loaded Q of cavity (QL)

– Detuning of cavity (Δω)

• During flattop, the cavity is approximately in steady 
state, so steady state equations can be used
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Induced Cavity Voltage by the Klystron Power

Recall: cavity resonance circle 
for steady state behavior

If there is no beam, the cavity is 
driven by the forward voltage 
concern to klystron power
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Vector Diagram for Cavity Driving

Resonance circle for 
beam current induced 

voltage

Resonance circle for 
klystron power induced 

voltage
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Effect of Detuning

• Detuning will decrease the cavity voltage and shift the cavity phase
• More input power will be needed to maintain the cavity voltage
• Input phase should be changed to compensate the phase shift
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Klystron Power in Presence of Beam and Detuning

Optimization for minimizing the klystron power required:
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Power Required as Function of Detuning

Example:
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RF Power Reflection at Flattop Stage

• Energy conservation yields

• For superconducting cavity, during flattop, the reflected power can 
be approximated as
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Ideas for Minimizing the Required Klystron Power

• Reduce the detuning effect
– At filling stage, track the frequency of the input RF with the resonance 

frequency of the cavity 
– The pre-detuning of the cavity should be adjusted to minimize the 

average detuning during flattop
– Piezo tuner can be used to compensate the Lorenz force detuning 

during flattop

• If there is beam, optimize the loaded Q, detuning and filling time
– When the beam is large, optimize the loaded Q and detuning during 

the flattop with the equations in this section
– When the beam is small, matching of the beam is not feasible, 

compromise should be made for the selection of the loaded Q and 
filling time
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Mechanical Model of the Cavity
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Cavity Deformation by Electromagnetic Field 
Pressure

• Radiation pressure

• Resonance frequency shift
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Static Lorenz Force Detuning
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Dynamic Lorenz Force Detuning
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Pass Band Modes of the Cavity
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Cavity Model with Pass Band Modes

• Goal: Model the cavity including the pass band modes 
by extending the π mode cavity equation discussed 
before

( ) forc
c VVj

dt
Vd 


2/12/1 2ωωω =∆−+
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Circuit Model of the 9-Cell Cavity

• Electrical coupled series resonance circuits driven by a voltage source
• Assume all cells are identical
• Cells are coupled via Ck
• Beam tube effect at the 1st and 9th cell is modeled with Cb
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Steady State Equation of the Cavity
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Frequency Response of the 9-Cell Cavity
Keep the driving voltage amplitude constant, change the frequency:
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Pass Band Modes of the Cavity

Pass band modes can be calculated by solving the eigenvalue 
problem by removing the driving term in the cavity equation, as 
results
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Relative Field Distribution of Pass Band Modes

0 5 10
0

0.5

1
A

m
pl

itu
de

π/9 Mode

0 5 10
-0.5

0

0.5

A
m

pl
itu

de

2π/9 Mode

0 5 10
-0.5

0

0.5

A
m

pl
itu

de

3π/9 Mode

0 5 10
-0.5

0

0.5

A
m

pl
itu

de

4π/9 Mode

0 5 10
-0.5

0

0.5

A
m

pl
itu

de

5π/9 Mode

0 5 10
-0.5

0

0.5

A
m

pl
itu

de

6π/9 Mode

0 5 10
-0.5

0

0.5

Cell No.

A
m

pl
itu

de

7π/9 Mode

0 5 10
-0.5

0

0.5

Cell No.

A
m

pl
itu

de

8π/9 Mode

0 5 10
-0.5

0

0.5

Cell No.

A
m

pl
itu

de

π Mode



S. Simrock & M. Grecki,  5th LC  School,  Switzerland, 2010,  LLRF & HPRF 61

Quality Factor of Different Pass Band Modes

• For superconducting cavity, the internal power loss of the cavity can be 
neglected, so the loaded quality factor can be approximated to be

• From the normalized field distribution of the pass band modes, the effective 
stored energy in the cavity for each pass band mode is the same.

• If we ignore the difference of the resonance frequency, the loaded quality factor 
of each mode is inversed proportional to the stored energy in the first cell, use 
the loaded quality factor in π mode as reference, we get
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Field in the 9th Cell

• Field in the 9th cell is important because the probe is installed there

• The field for different pass band modes in the 9th cell has the property of
– Have the same amplitude to the same input power

– The phase difference of the nearest pass band modes is 180 degree

– The loaded Qs are different
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Cavity Model with Pass Band Modes

• Based on the π mode model discussed before, the cavity model with pass band 
modes can be made as follows

– Each pass band mode is modeled with a base band equation similar with the π mode 
– The driving term of all pass band modes are the same for the same input power 
– Different pass band mode has different bandwidth
– The overall cavity voltage is the superposition of the voltage of all the pass band 

modes, use the equations below
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Transfer Function of the Cavity

• From the cavity equations, the transfer function of the cavity is
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Bode Plot of the Cavity Transfer Function
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Cavity Simulator
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Cavity Simulator

• Idea: build a hardware cavity simulator to simulate the cavity 
behavior including the Lorenz force detuning

• Use cases:
– Test the LLRF hardware such as down converter, controller and 

actuator before the real cavity is ready
– Control algorithm study
– Operator training
– LLRF system on-line calibration if integrated with working system

Cavity Simulator
(DSP or FPGA)

RF or base 
band input

RF or base 
band output
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Possible Cavity Simulator Integration with LLRF



S. Simrock & M. Grecki,  5th LC  School,  Switzerland, 2010,  LLRF & HPRF 69

Discrete Cavity Equation
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T is the sampling period. The discrete equation can be 
realized in digital processors, such as FPGA, for simulation

(state space equation)

(discrete)



S. Simrock & M. Grecki,  5th LC  School,  Switzerland, 2010,  LLRF & HPRF 70

Discrete Mechanical Equation for Lorenz Force 
Detuning
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Cavity Simulator Block Diagram

Electrical Model (VfV
Mechanical Model

∆∆ ∑IIV(∆∆∆d
Several mechanical
modes are included
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Cavity Simulator at DESY
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Cavity Simulator at KEK
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Software Real Time Cavity Simulator at Fermilab



S. Simrock & M. Grecki,  5th LC  School,  Switzerland, 2010,  LLRF & HPRF 75

Summary

In this part, we have learnt:

• Model the cavity with resonance circuits

• Baseband equations for cavity model

• RF power dissipation and reflection of a cavity

• Mechanical model of the cavity

• Pass band modes model of the cavity

• Concept for cavity simulator
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