

Klystron

Possible RF Sources

Klystron today

Frequency Range: ~350MHz to ~17GHz

Output Power: CW: up to ~1.3MW

Pulsed: up to ~200MW at ~1ms

up to $\sim 10MW$ at $\sim 1ms$

Klystron Gun Voltage: DC: ~100kV

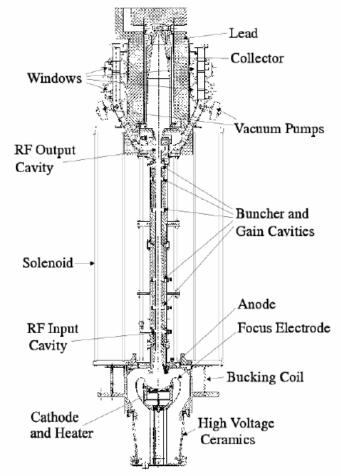
Pulsed: ~600kV at ~1ms

 $\sim 130 \text{kV}$ at $\sim 1 \text{ms}$

• Tetrode, Triode: Frequency up to ~200-300MHz, ~10kW

- IOT: Frequency up to ~1.3GHz, Power: ~30kW, HOM IOT maybe 5MW in the future
- Gyroklystron: Frequency above ~20GHz, ~10MW
- Gyrotron: Frequency typical 100GHz, ~1MW
- Magnetrop. Oscillator, ~10MW
- Travelling Wave Tube, Magnicon, Orbitron, Amplicon etc.

Not for ILC



Klystron Theory

- The klystron principle will be explained
- A basic and simplified theory can be found in the appendix
- Today klystrons or subcomponents of klystrons are designed and calculated making use of different computer codes (Egun, FCI, Mafia, Microwave Studio, Ansys, Magic, special codes developed by klystron manufacturers ...)
- PIC codes have been developed recently

Klystron Principle

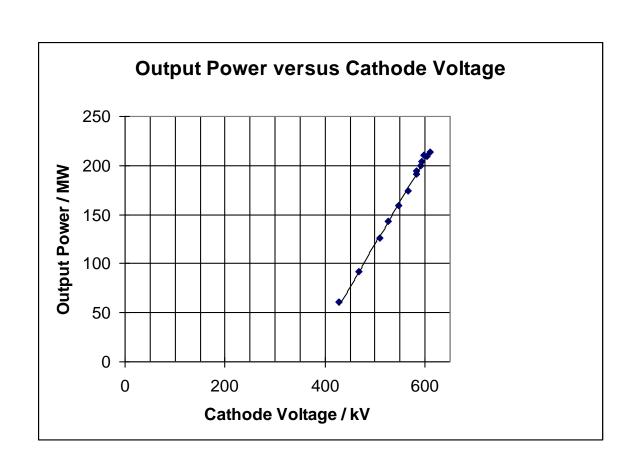
Example: 150MW, 3GHz S-Band Klystron

- The cathode is heated by the heater to ~1000°C.
- The cathode is then charged (pulsed or DC) to several 100kV.
- Electrons are accelerated form the cathode towards the anode at ground, which is isolated from the cathode by the high voltage ceramics.
- The electron beam passes the anode hole and drifts in the drift tube to the collector.
- •The beam is focussed by a bucking coil and a solenoid.
- By applying RF power to the RF input cavity the beam is velocity modulated.
- On its way to the output cavity the velocity modulation converts to a density modulation. This effect is reinforced by additional buncher and gain cavities.
- The density modulation in the output cavity excites a strong RF oscillation in the output cavity.
- RF power is coupled out via the output waveguides and the windows.
- Vacuum pumps sustain the high vacuum in the klystron envelope.
- The beam is finally dumped in the collector, where it generates X-rays which must be shielded by lead.

Klystron Perveance

- Perveance p = I / U^{3/2} (I = klystron current, U = Klystron voltage) is a parameter of the klystron gun determined by the gun geometry (Theory see Appendix)
- Example: THALES TH2104C 5MW, 1.3GHz Klystron U=128kV I=89A p=1.94*10⁻⁶A/V^{3/2} (mperveance=1.94)

Klystron Output Power

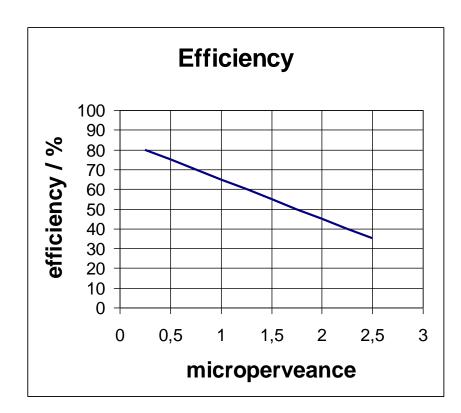

$$P_{RF} = \eta P_{Beam}$$

$$P_{Beam} = UI$$

$$P_{Beam} = p U^{5/2}$$

$$\eta = \eta(U) \propto U^{>0}$$

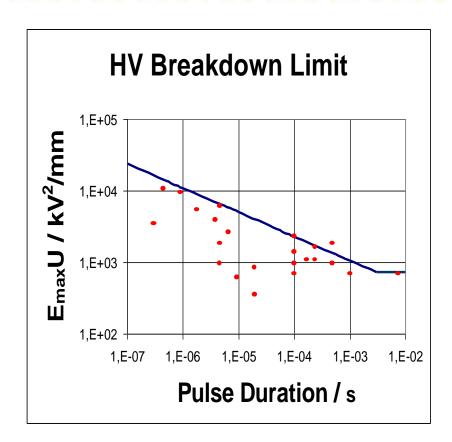
$$P_{\scriptscriptstyle RF}$$
 \propto $U^{\scriptscriptstyle >5/2}$



Example: RF output power of a 3GHz (S-band) klystron as function of the voltage

Klystron Efficiency

- Efficiency of a klystron depends on bunching and therefore on space charge forces
- Lower space forces allow for easier bunching and more efficiency
- Decreasing the charge density (current) and increasing the stiffness (voltage) of the beam increase the efficiency
- Higher voltage and lower current, thus lower perveance would lead to higher efficiency


Rule of thumb formula from fit to experimental data

$$\eta = 0.85 - 2 \times 10^5 \times p$$

Klystron Gun Breakdown Limit

- Disadvantage: higher voltage increase the probability of breakdown
- The breakdown limit EU depend on the pulse duration

$$E_{max} \times U = 100 \times \tau^{-0.34} (kV)^{2} / mm$$

Multibeam Klystron

Idea

Klystron with low perveance:

=> High efficiency but high voltage

Klystron with low perveance and low high voltage

⇒ low high voltage but low power

Solution

Klystron with many low perveance beams:

low perveance per beam thus high efficiency low voltage compared to klystron with single low perveance beam

Multi Beam Klystron THALES TH1801 (1)

Measured performance

Operation Frequency: 1.3GHz

Cathode Voltage: 117kV

Beam Current: 131A

mperveance: 3.27

Number of Beams: 7

Cathode loading: 5.5A/cm²

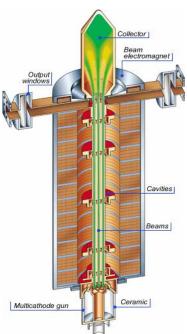
Max. RF Peak Power: 10MW

RF Pulse Duration: 1.5ms

Repetition Rate: 10Hz

RF Average Power: 150kW

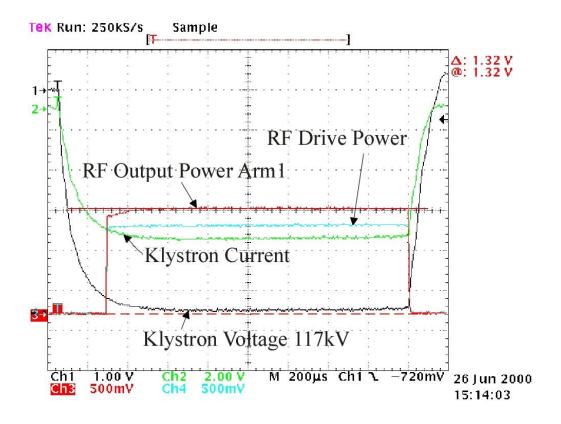
Efficiency: 65%

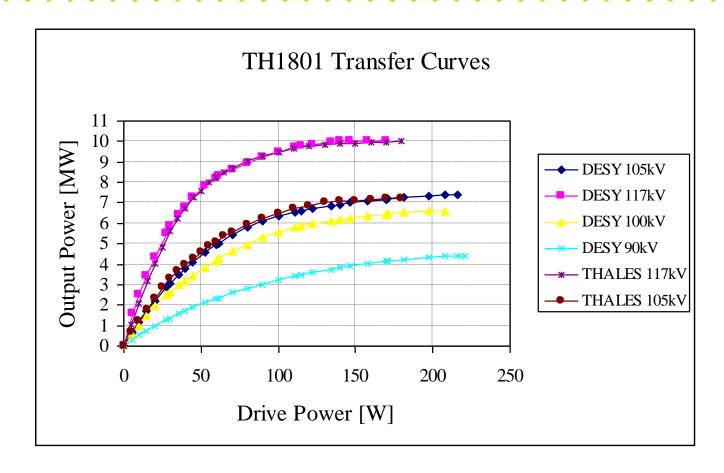

Gain: 48.2dB

Solenoid Power: 6kW

Length: 2.5m

Lifetime (goal): ~40000h

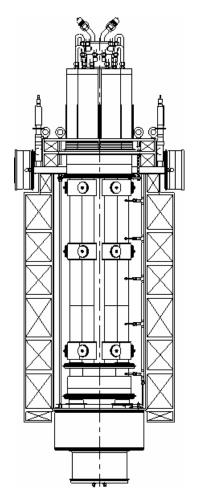




Multi Beam Klystron THALES TH1801 (2)

Pulse Waveforms of a Klystron (Voltage, Current, RF Drive Power, RF Output Power)

Multi Beam Klystron THALES TH1801 (3)


Transfer Curves: RF output as function of RF drive power with klystron voltage as parameter

Multi Beam Klystron CPI VKL-8301(1)

Design Features:

- 6 beams
- HOM input and output cavity
- Individual intermediate FM cavities
- Cathode loading: <2.5A/cm² lifetime prediction: >100000h

Drawing of the Klystron

Multi Beam Klystron CPI VKL-8301 (2)

Specified Operating Parameters

Peak Power Output	10	MW (min)
Ave. Power Output	150	kW (min)
Beam Voltage	114	kV (nom)
Beam Current	131	A (nom)
mperveance	3.40	
Frequency	1300	MHz
Gain	47	dB (min)
Efficiency	67	% (nom)
Cathode Loading	2.0	A/cm ²
Dimensions H,Ø:	2.3 by	1.0 meters
Weight	2000	lbs

Electromagnet

Solenoid Power	4	kW (max)
Coil Voltage	200	V (max)
Weight	2800	lbs

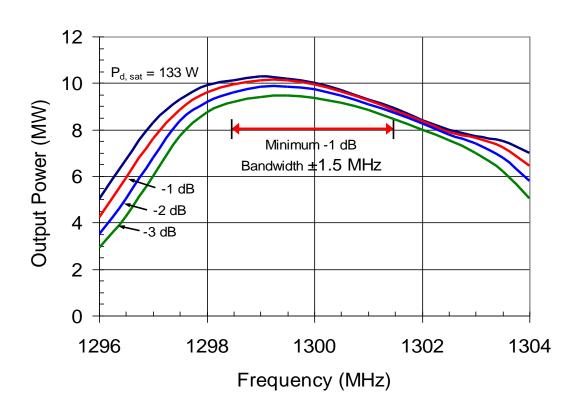
Klystron during construction

Multi Beam Klystron CPI VKL-8301 (3)

Measured Operating Parameters at CPI at 500ms pulsewidth

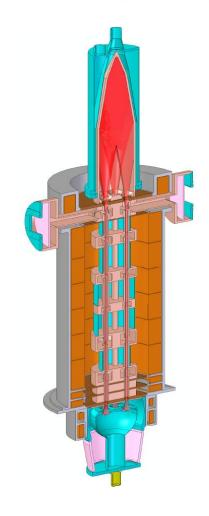
10	MW
150	kW
120	kV
139	A
3.34	
1300	MHz
49	dB
60	%
	150 120 139 3.34 1300

Beam Transmission


DC, no RF	99.5	%
at Saturation	98.5	%

Klystron ready for shipment

Klystron CPI


Output power as function of frequency

The TOSHIBA E3736 MBK (1)

Design Features:

- 6 beams
- Ring shaped cavities
- Cathode loading: <2.1 A/cm²

Design Layout

The TOSHIBA E3736 MBK (2)

Measured performance

Voltage: 115kV

Current: 135A

mperveance: 3.46

Output Power: 10.4MW

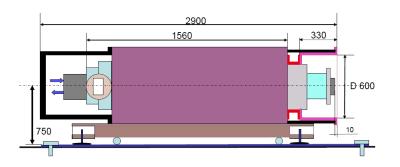
Efficiency: 67%

Pulse duration: 1.5ms

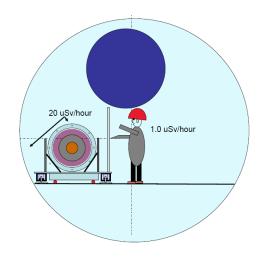
Rep. Rate: 10Hz

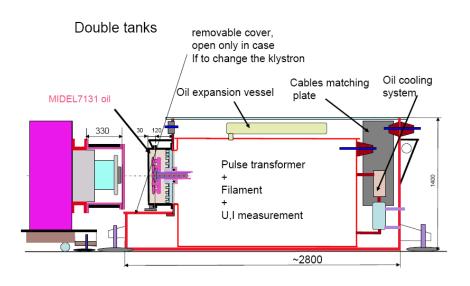
Klystron ready for shipment

Horizontal Klystron


 Horizontal klystrons are already in use e.g. the LEP klystrons at CERN or the B-factory klystrons at SLAC

Aspects


- Space in tunnel
- Transportation of klystron and pulse transformer in the tunnel
- Exchange of the klystrons
- Ease of interchange of different types of klystrons to pulse transformer tank and to waveguide distribution system
- X-ray shielding
- Oil leakage


Horizontal MBK

Horizontal MBK

X-Ray shielding

MBK gun and pulse transformer

Klystron Replacement for the TESLA Linear Collider

- The klystron lifetime will be determined most likely by the cathode lifetime since other klystron components are operated at a moderate level
- With a klystron lifetime of 40000h and an operation time of 5000h per year 8 klystrons must be replaced during a monthly access day
- An overhead of 12 klystrons will be installed, therefore no degradation of accelerator performance is expected between two access days
- Teams of 3-4 people will exchange a klystron within a few hours; klystrons will be equipped with connectors (HV, controls, cooling, waveguides) which allow fast exchange of a klystron in the tunnel

Mr.	0	Vorgangsname	Dauer	07:30	08:00	08:30	09:00	09:30	10:00	10:30	11:00	11:30	12:00	12:30	13:00
1		Klystron Exchange Main LINAC	0,2 Tage	, I	₩									7	
2	1	Transportation to tunnel position	60 M in.				ካ								
3		Local breakers to change mode	10 Min.												
4		Disconnect HV coax cable	20 M in.				F	h							
5		Disconnect local controls	20 M in.				 	H							
8		Disconnect water cooling system	30 M in.				┡	中							
7		Disconnect two waveguides	30 M in.				₩_	#							
8		Unexpected events	30 M in.					*	<u></u>						
9	=	Remove klystron	15 M in.						₩_						
10		Put klystron into positon	15 M in.						•	<u></u>					
11		Connect two waveguides	30 M in.							H	<u></u>				
12		Connect the water cooling system	30 M in.							₩ <u> </u>	₽				
13		Connect local control	10 M in.							P □					
14		Connect HV coax cable	30 M in.							₩_					
15		Check all above again	20 M in.								+	Ъ			
18		Unexpected events	15 M in.												
17	1	Local breakers to operation	5 M in.									₩.			
18	111	Transportation out of the tunnel	60 M in.									L			