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Science Motivation  Linear 

Collider

• Frontiers of Particle Physics

• The energy frontier 

• The Large Hadron Collider

• Why a complementary lepton collider ?

• The ILC concept
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Tools: Astronomy and Astrophysics

Galileo to Hubble to LIGO
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The fundamental questions
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How did we get where we are?
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“There are more things in heaven and earth, Horatio, 
than are dreamt of  in your philosophy” (Hamlet, I.5)



The Physical World -- Matter
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The physical world is 

composed of Quarks and Leptons 

interacting via             force 

carriers (Gauge Bosons)

Last discovered quark & lepton   

top-quark      1995

tau-neutrino  2000  



Relations between the 

constituents
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Ordinary matter is made up of up and down 

quarks and electrons.

What are the rest?  The distinguishing feature is the 

mass.

The Three families only connected via weak interaction



26-Oct-10
Linear Collider School 2010                                

Lecture I-1
19

Matter

• Three families of Quarks and Leptons, but matter around us 
made up of only first of the three families

• At high energies, particles produced democratically, that is all 
three families are produced equally.

• This was the how particles were made in the early universe, 
near the time of the big bang, BUT .....

• We live in a world of particles.  Where are the antiparticles?  
Answer: There was apparently a near cancellation where 
slightly more particles than antiparticles produced.  The 
reasons are unknown, but leading ideas connect to CP 
violation and baryon instability. 
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The Forces in Nature

Strong Force 1

Gluons   g

m = 0

Quarks

Atomic Nucleus

Electro-magnet 

Force

~ 1/1000

Photon  γ

m = 0

Electric Charge

Atoms, Chemistry

Weak Force ~ 10 -5
W, Z Bosons

m = 80 , 91 GeV 

Leptons, Quarks

Radioactive Decays 

(β-decay)

type          rel.strength     force carriers             acts on/in

Force Carriers (Bosons) exchange interactions
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Carriers of Force

Four fundamental Forces act between Matter Particles

through  Force Carriers (Gluons, W± und Z0, γ, Graviton)

Forces in our energy regime: 

different strengths 

Forces at high energies:

democratic……..UNIFICATION

>Situation immediately after 

creation of the Universe HERA



Unification

Electricity and Magnetism
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Triumph of the 19th century.  Led to understanding of E&M form 

electromagnets to motors to modern devices like lasers



Further Unification

--- Electroweak ---
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Proposed by Abdus Salam, 

Glashow &

Weinberg

Key tests at LEP

In good agreement with all

laboratory experiments



Electroweak Unification
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Electroweak Unification
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Experimental Proof
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Discovery of the weak 

neutral current (1974)

n + N  n + Hadrons



Direct Confirmation
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Prediction of the Standard 

Model

Number of families:

N = 2.984 +- 0.008

LEP

e+e- —> Z0 —> f f 
where  f=q,l,ν

σZ and ΓZ depend 

on number of 

(light) neutrinos

resonance curve Z-Boson

Nobel Prize 2008:

Kobayashi-Maskawa)



LEP – Precision Tests of EW 

Model
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Today’s biggest question

What’s beyond the Standard Model?

1. Are there undiscovered principles of nature:
New symmetries, new physical laws?

2. How can we solve the mystery of dark energy?
3. Are there extra dimensions of space?
4. Do all the forces become one?
5. Why are there so many kinds of particles?
6. What is dark matter?

How can we make it in the laboratory?

7. What are neutrinos telling us?
8. How did the universe come to be?
9. What happened to the antimatter?
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from the Quantum Universe



Addressing the Questions

• Neutrinos
– Particle physics and astrophysics using a 

weakly interacting probe

• Particle Astrophysics/Cosmology
– Dark Matter; Cosmic Microwave, etc

• High Energy pp  Colliders
– Opening up a new energy frontier       ( ~ 

1 TeV scale) 

• High Energy e+e- Colliders
– Precision Physics at the new energy 

frontier
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Answering the Questions

Three Complementary Probes

• Neutrinos as a Probe
– Particle physics and astrophysics using a weakly 

interacting probe

• High Energy Proton Proton Colliders
– Opening up new energy frontier ( ~ 1 TeV scale) 

• High Energy Electron Positron Colliders
– Precision Physics at the new energy frontier
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Addressing the Questions

• Neutrinos
– Particle physics and astrophysics using a 

weakly interacting probe

• Particle Astrophysics/Cosmology
– Dark Matter; Cosmic Microwave, etc

• High Energy pp  Colliders
– Opening up a new energy frontier       ( ~ 

1 TeV scale) 

• High Energy e+e- Colliders
– Precision Physics at the new energy 

frontier
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Neutrinos – Many Questions

• Why are neutrino masses so small ? 

• Are the neutrinos their own antiparticles?

• What is the separation and ordering of  the masses 
of  the neutrinos?

• Neutrinos contribution to the dark matter?

• CP violation in neutrinos, leptogenesis, possible 
role in the early universe and in understanding the 
particle antiparticle asymmetry in nature?
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Neutrinos from the Sun

Discovery: Neutrinos coming from the Sun were detected, 

demonstrating the solar fusion burning process.    (Davis / Koshiba 

Nobel Prize)

Problem: The rate of neutrinos were measured to be only about half 

the predicted rate.   Conclusion: either the sun works differently than 

theory or half the neutrinos disappear on their journey to the earth.    
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Neutrinos from the Sun

Photo of  Sun taken 

underground using 

neutrinos

Subsequent experiments at Kamioka 

mine in Japan and Sudbury mine in 

Canada demonstrated the reduced rate 

was due to neutrino oscillations

n e n

n

.      

.       



Neutrino Oscillations in the 

Lab
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Ice Cube Project

• Neutrino Astrophysics – Investigating astrophysical 

sources emitting ultra high energy neutrinos
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South Pole



Neutrinos – Many Questions

• In the mixing matrix of three neutrino generations, two parameters have yet to 
be determined: the smallest mixing angle, θ13, and the CP violating phase, δCP . 
Knowing the size of θ13 will define the future direction of investigating neutrino 
oscillation. 
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DAYA BAY

Reactor Neutrinos
Neutrino oscillations, due to 

mixing of mass eigenstates, 

have been observed in 

atmospheric and solar neutrino 

experiments such as Super-K 

and SNO, as well as in 

KamLAND and K2K using 

prepared neutrino sources. 



Accelerators and 

Neutrinos

• Long baseline neutrino experiments – Create 
neutrinos at an accelerator or reactor and study at 
long distance when they have oscillated from one 
type to another.
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Accelerators and Neutrinos

PPARC

• Kinematics off-axis 
give a En that is 
almost independent 
of Ep.

• Therefore intense 
very narrow band 
beam
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Addressing the Questions

• Neutrinos
– Particle physics and astrophysics using a 

weakly interacting probe

• Particle Astrophysics/Cosmology
– Dark Matter; Cosmic Microwave, etc

• High Energy pp  Colliders
– Opening up a new energy frontier       ( ~ 

1 TeV scale) 

• High Energy e+e- Colliders
– Precision Physics at the new energy 

frontier
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Dark Matter
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What don’t we see?

Dark Matter

Neutrinos

Dark Energy

…

Higgs Bosons !

Antimatter !!
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The Energy Budget of the Universe

Anti-Matter 0%

Higgs boson ???



Dark Matter

the evidence

From the Kepler’s law,                                        for r much larger 

than the luminous terms, you should have v a r -1/2 However,

Instead, it is flat or rises slightly.

r

rGM
vcirc

)(
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This is the most direct 

evidence for dark matter.

There are many 

complementary 

measurements at all scales

Corbelli & Salucci (2000); 

Bergstrom (2000)



Other Dark Matter Evidence

• Evidence from a wide range of  

astrophysical observations including 

rotation curves, CMB, lensing, clusters, 

BBN, SN1a, large scale structure

• Each observes dark matter through 

its gravitational influence 

• Still no (reliable) observations of  dark 

matter’s electroweak interactions (or 

other non-gravitational interactions) 

• Still no (reliable) indications of  dark 

matter’s particle nature



Dark Matter Particle Candidates

Axions, Neutralinos, Gravitinos, Axinos, Kaluza-

Klein Photons, Kaluza-Klein Neutrinos, Heavy 

Fourth Generation Neutrinos, Mirror Photons, 

Mirror Nuclei, Stable States in Little Higgs 

Theories, WIMPzillas, Cryptons, Sterile Neutrinos, 

Sneutrinos, Light Scalars, Q-Balls, D-Matter, Brane 

World Dark Matter, Primordial Black Holes, …

EVIDENCE STRONGLY FAVORS NON-

BARYONIC COLD DARK MATTER



Leading Dark Matter Candidate

Weakly Interacting Massive Particles (WIMPs)

Weakly interacting particles produced 

thermally in the early universe

Large mass compared to standard 

particles. 

Due to their large mass, they are relatively 

slow moving and therefore “cold dark 

matter.”

Leading candidate – “Supersymmetric 

Particles”

Supersymmetric dark matter would solve one of  biggest problems in 

astrophysics and particle physics at the same time !
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Supersymmetry

•The most theoretically appealing 

extension of  the Standard Model

•Natural solution to hierarchy 
problem (stabilizes quadradic 
divergences to Higgs mass)

•Restores unification of  couplings

•Vital ingredient of  string theory

•Naturally provides a compelling 
candidate for dark matter

, Z, h, Hg
~  ~  ~~



Searching for Dark Matter
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Underground

On Accelerators

In Space



Direct Detection of Relic 

WIMPS
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The “Cryogenic Dark Matter 

Search” (CDMS)
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The CDMS experiments measures 

the recoil energy imparted to 

detector nuclei through WIMP-

nucleon collisions by employing 

sensitive phonon detection 

equipment coupled to arrays of  

cryogenic germanium and silicon 

crystals.



WIMP Direct Searches
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• Located at the Soudan mine in 
sunny Minnesota

• CDMS II is 2341 feet below the 
surface (2090 mwe)

CDMS
Cryogenic 

Dark Matter Search



Sources of Background
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polyethylene

outer moderator
detectors inner Pb

shield
dilution

Refrigerator (10 mK)

Icebox

outer Pb shieldscintillator

veto

‘External’ neutron

muons

‘Internal’ 

neutron

Gammas / X-Rays
• Reject using additional shielding

Electrons

• Produced in the detector – rejected via 

analysis

Neutrons

• Reject by additonal  scintillator veto

Cosmic Ray Muons

• Depth (2090mwe) reduces muon flux by 

a factor of  ~50,000



Recent CDMS Result
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“The final exposure of  our low-

temperature Ge particle detectors at the 

Soudan Underground Laboratory yielded 

two candidate events, with an expected 

background of  0.9 ± 0.2 events.” 

“The combined CDMS II data place the 

strongest constraints on the WIMP-

nucleon spin-independent scattering cross 

section for a wide range of  WIMP masses 

and exclude new parameter space in 

inelastic dark matter models.” 

Published Online February 11, 2010

Science DOI: 10.1126/science.1186112 



Addressing the Questions

• Neutrinos
– Particle physics and astrophysics using a 

weakly interacting probe

• Particle Astrophysics/Cosmology
– Dark Matter; Cosmic Microwave, etc

• High Energy pp  Colliders
– Opening up a new energy frontier       ( ~ 

1 TeV scale)

• High Energy e+e- Colliders
– Precision Physics at the new energy 

frontier
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Break



Particle Colliders
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Particle Colliders
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Megascience project --- LHC
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Exploring the Terascale

the tools

• The LHC
– It will lead the way and has large reach

– Quark-quark, quark-gluon and gluon-gluon collisions at 0.5 - 5 
TeV

– Broadband initial state

• The ILC
– A second view with high precision

– Electron-positron collisions with fixed energies, adjustable 
between 0.1 and 1.0 TeV

– Well defined initial state

• Together, these are our tools for the terascale 
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Spectrum of  Supersymmetric Particles
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MSSM

mSUGRA

squarks and 

sgluons heavy 

yielding long decay 

chains ending with 

LSP neutrilino 
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LHC – CERN Accelerator Complex

Not to scale
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LHC is deep underground



26-Oct-10
Linear Collider School 2010                                

Lecture I-1
72

LHC --- Superconducting Magnet
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Proton-Proton Collisions at the LHC

 2835 + 2835 proton bunches

separated by 7.5 m

→  collisions every 25 ns

= 40 MHz crossing rate

 1011 protons per bunch

 at 1034/cm2/s

≈ 35 pp interactions per crossing

pile-up

→ ≈ 109 pp interactions per second !!!

 In each collision

≈ 1600 charged particles produced

Enormous challenge for the detectors
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The LHC Accelerator

Tests of superconducting magnets 

(3 years, 24 hours per day)

Teams from India at the CERN test facility
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Transfer line magnets from SPS to LHC (~5km)

Transfer Line: main quadrupole (blue), followed by a corrector (green) and a series 

of main dipoles (red). All built by Budker Institute for Nuclear Physics (BINP) in 

Novosibirsk, Russia

The LHC Accelerator
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76

Inner triplet magnets from US and Japan 

focusing the LHC beams towards the collision points

The LHC Accelerator
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• Each experiment has its own independent management and governance 

structure

The LHC Experiments
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Compact Muon Solenoid - CMS

78

MUON BARREL

Silicon Microstrips
Pixels

ECAL

Scintillating 

PbWO4 crystals

Cathode Strip Chambers 
Resistive Plate Chambers

Drift Tube
Chambers 

Resistive Plate
Chambers 

SUPERCONDUCTING
COIL

IRON YOKE

TRACKER

MUON

ENDCAPS

Total weight : 12,500 t
Overall diameter : 15 m
Overall length : 21.6 m
Magnetic field : 4 Tesla

HCAL

Plastic scintillator/brass

sandwich

CALORIMETERS

Number of scientists: 2310

Number of institutes: 175

Number of countries: 38

LHC Experiments



Supersymmetric Detection at LHC
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Broad Physics Probe

• Dense hadronic matter

relativistic heavy-ion collisions

quark-gluon plasma?

• Matter-antimatter asymmetry

CP violation in B system
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• Connections with cosmology

Inflation and dark matter 

early Universe and the origin of matter

LHC
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Event rates in ATLAS or CMS  at L = 1033 cm-2 s-1

Statistics at High Energy and Luminosity

LHC is a factory for anything:  top, W/Z, Higgs, SUSY, etc….

mass reach for discovery of new particles up to  m ~ 5 TeV

Process                          Events/s Events per year    Total statistics collected
at previous machines by 2007

W en 15 108    104 LEP / 107 Tevatron 

Z ee                           1.5 107 107 LEP

1 107 104 Tevatron

106 1012 – 1013 109 Belle/BaBar   ?

gg~~

tt

bb

H  m=130 GeV               0.02 105 ? 

m= 1 TeV               0.001 104 ---

Black holes                   0.0001 103 ---
m > 3 TeV
(MD=3 TeV, n=4)

LHC-b

+ Ion Collisions



LHC Physics

26-Oct-10
Linear Collider School 2010                                

Lecture I-1
82

Interesting cross sections

Higgs

Susy

• Small couplings ~ α2

• Fraction ~ 1/1,000,000,000,000

• Need to pull out rare events

• Need ~ 1,000 events for signal
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Mass Range of the Higgs

A B

C

D

The current knowledge of Mass Range of 

The Higgs comes from the examination

of very precise experimental data collected

in the last decades incorporating the 

“Higher Order effects” of the interactions.

Higher Order Correction
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Estimation of the Higgs mass 

range



LHC  and the Energy Frontier

Source of Particle Mass
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The Higgs Field
Discover the Higgs

or variants or ???

fb-1

LEP

FNAL



LHC - Higgs Production and Cross 

Section
four production mechanisms
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LHC - Higgs Discovery Channels
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Large  QCD  backgrounds:

s ( H  bb )  20 pb

(for MH =120 GeV )

s ( bb )       500 mb

Search for  , g final states

Higgs coupling proportional to 

mf, therefore b-quark dominates 

until reach WW, ZZ thresholds



LHC: Low mass Higgs: H  gg
MH < 150 GeV/c2

 Rare decay channel: BR~10-3

 Requires excellent electromagnetic 
calorimeter performance

 acceptance, energy and angle resolution,

 g/jet and g/p0 separation

 Motivation for LAr/PbWO4 calorimeters for CMS

 Resolution at 100 GeV:   s  1 GeV

 Background large:  S/B  1:20, but 
can estimate from non signal areas
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CMS



Low mass Higgs: ttH  ttbb channel
MH < 130 GeV/c2
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 Trigger - one lepton + 4 b-jets + 2 
jets

 Sophisticated background 
reduction

MH = 120 GeV/c2

ATLAS 

100 fb-1



LHC: Higgs Discovery
a few years away?
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Why a TeV Scale e
+
e

-

Accelerator?

• Two parallel developments over the past few years  (the 

science & the technology)

– The precision information from LEP and other data have pointed to a 
low mass Higgs;  Understanding electroweak symmetry breaking, 
whether supersymmetry or an alternative, will require precision 
measurements.

– There are strong arguments for the complementarity between a ~0.5-
1.0 TeV ILC and the LHC science.
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Possible TeV Scale Lepton 

Colliders
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ILC  < 1 TeV

Technically possible

~ 2019    

QUAD
QUAD

POWER EXTRACTION
STRUCTURE

BPM

ACCELERATING
STRUCTURES

CLIC  < 3 TeV

Feasibility?

ILC + 5-10 yrs
Main beam – 1 A, 200 ns 

from 9 GeV to 1.5 TeV

Drive beam - 95 A, 300 ns

from 2.4 GeV to 240 MeV

Muon Collider

< 4 TeV

FEASIBILITY??

ILC + 15 yrs?

Much R&D Needed

• Neutrino Factory R&D +

• bunch merging

• much more cooling

• etc

ILC

CLIC

Muon Collider



ILC- CLIC 

Collaboration

• CLIC – ILC Collaboration has two basic 
purposes: 
1. allow a more efficient use of resources, especially 

engineers
– CFS / CES
– Beamline components (magnets, instrumentation…)

2. promote communication between the two project 
teams.
– Comparative discussions and presentations will occur
– Good understanding of each other’s technical issues is 

necessary
– Communication network – at several levels – supports it

• Seven working groups which are led by 
conveners from both projects26-Oct-10
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Collaboration Working 

Groups

CLIC ILC

Physics & Detectors L.Linssen, D.Schlatter F.Richard, S.Yamada

Beam Delivery System 

(BDS) & Machine Detector 

Interface (MDI)

L.Gatignon

D.Schulte, 

R.Tomas Garcia

B.Parker, A.Seriy

Civil Engineering &

Conventional Facilities

C.Hauviller, J.Osborne. J.Osborne,

V.Kuchler

Positron Generation L.Rinolfi J.Clarke

Damping Rings Y.Papaphilipou M.Palmer
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The ILC

• Two linear accelerators, with tiny intense beams of 
electrons and positrons colliding head-on-head

• Total  length ~ 30 km long  (comparable scale to LHC) 

• COM energy = 500 GeV, upgradeable to 1 TeV
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LHC --- Deep Underground
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ILC --- Deep Underground
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LHC --- Superconducting Magnet 
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ILC - Superconducting RF Cryomodule
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LHC --- Magnets Installed 



Addressing the Questions

• Neutrinos
– Particle physics and astrophysics using a 

weakly interacting probe

• Particle Astrophysics/Cosmology
– Dark Matter; Cosmic Microwave, etc

• High Energy pp  Colliders
– Opening up a new energy frontier       ( ~ 

1 TeV scale) 

• High Energy e+e- Colliders
– Precision Physics at the new energy 

frontier
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What will e+e- Collisions Contribute?

• elementary particles

• well-defined 
– energy,

– angular momentum

• uses full COM energy

• produces particles 
democratically

• can mostly fully 
reconstruct events
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– Three RF/cable penetrations every rf unit
– Safety crossovers every 500 m
– 34 kV power distribution
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Main Linac Double Tunnel
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Comparison:  ILC and LHC

ILC                     LHC

Beam Particle :       Electron  x  Positron      Proton  x  Proton

CMS Energy :             0.5 – 1 TeV                     14 TeV

Luminosity Goal :     2 x 1034 /cm2/sec          1 x1034 /cm2/sec 

Accelerator Type :         Linear                   Circular Storage Rings

Technology :            Supercond. RF            Supercond. Magnet



The Higgs and the 

ILC
• The Higgs discovery 

appears around the 
corner (at the LHC)

• The mass appears 
below 200 GeV, well 
within the range of a 
500 GeV linear collider

• Is the Higgs the Higgs? 
Are there more?  Is it a 
variant?
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Higgs event Simulation 

Comparison

b
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LHC ILC
e+ e–

 Z H

Z  e+ e–, H b … 
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The linear collider will 

measure the spin of any 

Higgs it can produce by 

measuring the energy 

dependence from threshold

ILC:  Is it really the Higgs ?

Measure the quantum 

numbers.  The Higgs 

must have spin zero !
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Higgs Coupling-mass relation

ii vm 

Remember - the Higgs is a Different! 

• It is a zero spin particle that fills the vacuum

• It couples to mass; masses and decay rates are related



Precision Higgs physics
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Model-independent Studies

• mass

• absolute branching ratios

• total width

• spin

• top Yukawa coupling

• self coupling

 Precision Measurements
Garcia-Abia et al



26-Oct-10
Linear Collider School 2010                                

Lecture I-1
110

Higgs Branching Ratios



What can we learn from the 

Higgs?
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Precision measurements of Higgs coupling

Higgs Coupling 

strength is 

proportional to 

Mass



e
+
e

-
:  Studying the Higgs

determine the underlying model
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SM 2HDM/MSSM

Yamashita et al
Zivkovic et al



If the Higgs is not found?
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Cross section for 

WW scattering 

violates unitarity 

at ~1.2 TeV, unless 

there are new 

resonances

Krstonosic et al.

ILC has sensitivity into multi-TeV region



Higgs not found
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Birkedal et al.

Krstonosic et al.

Effective Lagrangian

Strong EWSB:
New resonance in WZWZ

Coupling structure can be 

determined at ILC 

if resonance seen by LHC



Top Quark 

Measurements
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Threshold scan provides 

mass measurement

Theory (NNLL) controls 

mt(MS) to 100 MeV



Top Quark Measurements
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- Improved Standard

Model fits

- MSSM (mh prediction)

- …

Precision top mass



Top Quark 

Measurements
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Bounds on axial ttbarZ and left handed tbW for LHC and 

ILC compared to deviations in various models
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Bosons Fermions

The virtues of Super-symmetry:

 Unification of Forces

 The Hierarchy Problem

 Candidate for the Dark Matter

– …

Integer Spin: 0, 1,.. Half integer Spin: 1/2, 3/2,..

Is there a New Symmetry in Nature?



Spectrum of Supersymmetric Particles
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MSSM

mSUGRA

squarks and sgluons 

heavy yielding long 

decay chains ending 

with LSP neutrilino 



Supersymmetric Detection at LHC
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Supersymmetry Reach at LHC
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Supersymmetric

Parameter

Space



Why e
+
e

-
Collisions ?

• elementary particles

• well-defined 

– energy,

– angular momentum

• uses full COM energy

• produces particles 
democratically

• can mostly fully reconstruct
events
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Supersymmetry at ILC
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- Measure quantum numbers 

- Is it MSSM, NMSSM, …?

- How is it broken?

ILC can answer these 

questions!

- tunable energy

- polarized beams

e+e- production crosssections



ILC Supersymmetry
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Two methods to obtain absolute sparticle masses:

In the continuumKinematic Threshold:

Minimum and maximum determines 

masses of primary slepton and 

secondary neutralino/chargino

Determine SUSY parameters 

without model assumptions

Martyn

Freitas



LHC + ILC 

Supersymmetry
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ILC precision + LHC mass reach for squarks/gluinos

Errors 

19-parameter fit 

using ILC+LHC:

Only possible with both LHC and ILC data



The Ultimate Unification

26-Oct-10
Linear Collider School 2010                                

Lecture I-1
127

Standard 

Model

MSSM



Supersymmetry
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Model-independent investigation of 

GUT/Planck scale features of the theory

Evolution from low to 

high scales of gauginos 

and scalar mass 

parameters

• LHC  gluino

• ILC  wino, zino, photino

1015 TeV



Supersymmetry

quark and lepton unification
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Do Quarks and 

Leptons also 

Unify?

•Predicted in most models

•Can be tested at the ILC 

1015 TeV



Superstring Theory
extra dimensions

• In addition to the 3+1 dimensional space-time, 
extra space-dimensions exist, presumably curled 
into a small space size.
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Internal quantum numbers of elementary particles are 

determined by the geometrical structure of the extra 

dimensions

Kaluza-Klein - Bosonic partners
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New space-time dimensions can be 

mapped by studying the emission 

of gravitons into the extra 

dimensions, together with a photon 

or jets emitted into the normal 

dimensions.

Linear collider

Direct production from 

extra dimensions ?



Extra dimensions and the Higgs?
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•Straight blue line gives the 

standard model predictions. 

• Range of predictions in models 

with extra dimensions -- yellow 

band, (at most 30% below the 

Standard Model

• The red error bars indicate the 

level of precision attainable at the 

ILC for each particle 

Precision measurements of Higgs coupling can reveal extra 

dimensions in nature



Dark Matter

• gravity = centrifugal 

GMm/r2 = mv/r2

• outside of galaxy 

v = √GM/r

• inside of galaxy

v = √4πGρ/3 r
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Dark Matter in our Galaxy

• Rotation speed of the spiral is almost constant over wide distance from 
the center

~ 0.3 GeV/cm of Dark Matter exists in our Galaxy
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Dark Matter Candidates
LSP

• The abundance of the LSP as dark 
matter can be precisely calculated, if the 
mass and particle species are given.

• ILC can precisely measure the mass and 
the coupling of the LSP

• The Dark Matter density in the universe 
and in our Galaxy can be calculated.

The most attractive candidate for the dark matter is the 
lightest SUSY particle
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The Cosmic 

Connection
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DM/DM main sensitivity

bulk 3.5%

focus 1.9%

co-ann.6.5%

funnel 3.1%

0

1 R R 1,e , ,  

0 0 0 0 0 0

1 2 1 3 1 1 1 1 1, , , , ( )+ + -  -   -   -  s  

0 0

1 1 1,  - 

0 0

1 1A , , 

SUSY provides excellent candidate for dark matter (LSP)

Other models also provide TeV-scale WIMPs

How well can the properties of the DM-candidates (to be found at

accelerators) be compared to the properties of the real DM 

(inferred from astrophysical measurements) ? 

Matches precision of future CMB exp.



How the physics defines the ILC

26-Oct-10
Linear Collider School 2010                                

Lecture I-1
137



How the physics defines the ILC
charge
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How the physics defines the ILC?
charge (continued)
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Parameters for the ILC

• Ecm adjustable from 200 – 500 GeV

• Luminosity   ∫Ldt = 500 fb-1 in 4 years 

• Ability to scan between 200 and 500 GeV

• Energy stability and precision below 0.1%

• Electron polarization of at least 80%

• The machine must be upgradeable to 1 TeV
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Lecture I-2

this afternoon

OVERVIEW of the ILC

• History and Concept

• Technologies and technical challenges

• Designing the ILC

• Detectors for the ILC
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