

Contents

Muon Colliders
R. B. Palmer (BNL)
ILC School

Villar, Switzerland oct 2010
1 INTRODUCTION 2
2 DEFINITIONS AND UNIT CONVENTIONS 39
3 SOLENOID FOCUSING 45
4 TRANSVERSE IONIZATION COOLING 71
5 LONGITUDINAL IONIZATION COOLING 82

1 INTRODUCTION

WHY CONSIDER A MUON COLLIDER

Why are leptons (e.g. e or μ) 'better' than protons

- Protons are made of many pieces (quarks and gluons)
- Each carries only a fraction of th proton energy
- Fundamental interactions occur only between these individual pieces
- And the interaction energies are only fractions $(\approx 1 / 10)$ of the proton energies
- Leptons (e's and μ 's) are point like
- Their interaction energies are their whole energies

$$
\mathrm{E}\left(3 \mathrm{TeV} e^{+} e^{-} \mathrm{CLIC} \text { or } \mu^{+} \mu^{-}\right) \equiv 2 \times \mathrm{E}(14 \mathrm{TeV} p \bar{p} \quad \mathrm{LHC})
$$

- In addition the energy and quantum state is known for $e^{+} e^{-}$or $\mu^{+} \mu^{-}$ but unknown for the parton-parton interaction with protons

S-Channel advantage of muons over electrons

- When all the collision energy \rightarrow a single state, it is called the "S-Channel"
- A particularly interesting S-Channel interaction would be

$$
e^{+} e^{-} \rightarrow \text { Higgs } \quad \text { or } \quad \mu^{+} \mu^{-} \rightarrow \text { Higgs }
$$

The cross sections σ for these interactions

$$
\sigma \propto m^{2}
$$

SO

$$
\sigma\left(e^{+} e^{-} \rightarrow H\right) \approx 40,000 \times \sigma\left(\mu^{+} \mu^{-} \rightarrow H\right)
$$

Muons generate less 'Beamstrahlung'

- When high energy electrons in one bunch pass through the other bunch they see the EM fields of the other moving bunch
- These fields are enough to generate synchrotron radiation (called beamstahlung)
- So the energy of the collision is not so well known

$$
\sigma_{E} \approx 30 \%\left(\text { at } 3 \mathrm{TeV} e^{+} e^{-} \quad \text { CLIC }\right)
$$

- And the luminosity at the requires energey is less

$$
\mathcal{L} \approx 1 / 3(\text { for } E \pm 1 \% \text { at } 3 \mathrm{TeV} \text { CLIC })
$$

- But for muons the synchrotron radiation $\left(\propto 1 / m^{3}\right)$ is negligible
- This could be a particular advantage for $\mu^{+} \mu^{-} \rightarrow H$ because with a narrow enough σ_{E} one could measure the width of a narrow Higgs

Why are Linear colliders linear?

- Earlier electon positron colliders (LEP), like proton colliders, were rings
- But proposed high energy electron colliders are linear

WHY

- Synchrotron radiation of particles bent in the ring magnetic field

$$
\begin{gather*}
\Delta E(\text { per turn })=\left(\frac{4 \pi m c^{2}}{3}\right)\left(\frac{r_{o}}{\rho}\right) \beta_{v}^{3} \gamma^{4} \tag{1}\\
\rho \propto \frac{\beta \gamma}{B} \tag{2}\\
\Delta E(\text { per turn }) \approx \propto \quad B \gamma^{3} \tag{3}
\end{gather*}
$$

- For electrons ($\mathrm{m} \approx 0.5 \mathrm{MeV}$) this becomes untenable for $E \gg 0.1 \mathrm{TeV}$
- Above this (LEP's) energy, electron colliders must be linear
- But for muons ($\mathrm{m} \approx 100 \mathrm{MeV}$) rings are ok up to around 20 TeV equivalent to a proton collider of 200 TeV

The advantages of rings

- Muon go round a ring many times
- Muons live 2μ seconds at the speed of light that is only 150 m But

$$
\tau_{\text {lab frame }}=\tau_{\text {rest frame }} \times \gamma
$$

- For a 1 TeV muon: $\gamma \approx 10,000 \quad \tau \approx 20 \mathrm{msec}$ they go 1500 km
- For $\langle B\rangle=10 \mathrm{~T}$, a 1 TeV ring will have a circumference of

$$
C=\frac{2 \pi[p c / e]}{c B}=\frac{2 \pi 10^{12}}{310^{8} 10}=2 \mathrm{~km}
$$

so they will go round, on average, $1500 / 2=700$ times

- Spot is 700 times larger than in a linear collider \rightarrow easier tolerances
- There can be 2 or more Detectors giving an even larger total luminosity gain
- Acceleration must also be fast, in a number of turns $\ll 700$ still much easier than in the single pass required for $e^{+} e^{-}$

So they are much smaller

$$
\mathrm{ILC} e^{+} e^{-(.5 ~ \mathrm{TeV})}
$$

CLIC $e^{+} e^{-}(3 \mathrm{TeV})$

And hopefully cheaper

Luminosity Dependence

$$
\begin{align*}
\mathcal{L} & =n_{\text {turns }} f_{\text {bunch }} \frac{N_{\mu}^{2}}{4 \pi \sigma_{\perp}^{2}} \tag{4}\\
\Delta \nu & =\frac{N r_{o} \beta^{*}}{4 \pi \gamma \sigma_{\perp}}=\frac{r_{o}}{4 \pi} \frac{N_{\mu}}{\epsilon_{\perp}} \tag{5}
\end{align*}
$$

ϵ_{\perp} is the normalized rms emittance

$$
\mathcal{L} \propto B_{\text {ring }} P_{\text {beam }} \Delta \nu \frac{1}{\beta^{*}}
$$

- Higher $\mathcal{L} / P_{\text {beam }}$ requires lower β^{*} or correction of $\Delta \nu$
- Lower emittances do not directly improve Luminosity/Power
- But for fixed $\Delta \nu, \epsilon_{\perp}$ must be pretty small to avoid N_{μ} becoming unreasonable The same luminosity easy with $\mu-p$
- Probably with another ring
- The event rate per bunch crossing is now significant but \ll LHC

Why NOT a $\mu^{+} \mu^{-}$collider

- Make muons from the decay of pions
- With pions made from protons on a target
- To avoid excessive proton power, we must capture a large fraction of pions made
- Use a high field solenoid

Captures most transverse momenta

- Use Phase rotation

Captures most longitudinal moments

- We capture both forward and backward decays and lose polarization
- The phase space of the pions is now very large:
- a transverse emittance of 20 pi mm and
- a longitudinal emittance of 2 pim
- These emittances must be somehow be cooled by a factor of order 10^{7} !
$-\approx 1000$ in each transverse direction and
$-\approx 40$ in longitudinal direction

Cooling Methods

- Electrons are typically cooled (damped) by synchrotron radiation but muons radiate too little $\left(\Delta E \propto 1 / m^{3}\right)$
- Protons are typically cooled by:
- a co-moving cold electron beam too slow
- Or by stochastic methods too slow
- lonization cooling is probably the only hope
- Although optical stochastic cooling has been studied does not look good

Neutrino Radiation Constraint

$$
\begin{align*}
\text { Radiation } & \propto \frac{E_{\mu} I_{\mu} \sigma_{\nu}}{\theta R^{2}} \propto \frac{I_{\mu} \gamma^{3}}{D} \\
\text { Radiation } & \propto \frac{\mathcal{L} \beta_{\perp}}{\Delta \nu<\mathrm{B}>} \frac{\gamma^{2}}{D} \tag{6}
\end{align*}
$$

For fixed $\Delta \nu, \beta_{\perp}$ and $$; and $\mathcal{L} \propto \gamma^{2}$:

$$
\begin{equation*}
\text { Radiation } \propto \frac{\beta_{\perp}}{\Delta \nuD} \gamma^{4} \tag{7}
\end{equation*}
$$

For $3 \mathrm{TeV}: \mathrm{D}=135 \mathrm{~m} \quad \mathrm{R}=40 \mathrm{Km} \quad \beta_{\perp}=5 \mathrm{~mm}$
For $6 \mathrm{TeV}: \mathrm{D}=540 \mathrm{~m} \quad \mathrm{R}=80 \mathrm{Km} \quad \beta_{\perp}=2.5 \mathrm{~mm} \quad$ \& higher $$

Conclusions on 'Why a muon collider"

- Point like interactions as in linear $e^{+} e^{-}$ effective energy 10 times hadron machines
- Negligible synchrotron radiation \rightarrow Acceleration in rings
- Less rf Hopefully cheaper
- Collider is a Ring $\quad 2000$ crossings per bunch
- Larger spot \rightarrow Easier tolerances
- 2 or more Detectors
- Small footprint Hopefully cheaper
- Negligible Beamstrahlung Narrow energy spread
- 40,000 greater S channel Higgs Enabling study of widths
- But serious challenge to cool the muons by $\gg 10^{7}$ times
- Neutrino radiation a significant problem at very high energies
- CLIC better understood, but is it affordable?

CURRENT BASELINE DESIGNS

C of m Energy	1.5	3	TeV
Luminosity	0.77	3.4	$10^{34} \mathrm{~cm}^{2} \mathrm{sec}^{-1}$
Beam-beam Tune Shift	0.087	0.087	
Muons/bunch	2	2	10^{12}
Total muon Power	9	15	MW
Ring <bending field $>$	6	8.4	T
Ring circumference	3.1	4.5	km
β^{*} at IP $=\sigma_{z}$	10	5	mm
rms momentum spread	0.1	0.1	$\%$
Repetition Rate	15	12	Hz
Proton Driver power	4.8	4.3	MW
Muon Trans Emittance	25	25	pi mm mrad
Muon Long Emittance	72,000	72,000	pi mm mrad

- Based on real Collider Ring designs, though both have problems
- Emittance and bunch intensity requirement same for both examples
- 3 TeV luminosity comparable to CLIC's (for $\mathrm{dE} / \mathrm{E}<1 \%$)

What is a Neutrino Factory?

- The Muon Collider came first, then the neutrino radiation problem, then the idea of using that radiation
- Its muon energy would be $4-40 \mathrm{GeV}$ instead of 0.5 to 5 TeV
- A lot of cooling is not needed. Only enough to fit in the acceleration
- Flux of muons is what counts. More cooling means more decay and less flux, so a lot of cooling is actually bad

Back to Collider: Emittances vs. Stage

Estimated losses vs 6D emittance

- Only 7\% survive
- This means that the initial pion, and thus proton, bunches must be intense
- More intense than IDS specification for a Neutrino Factory

Proton driver

- Project X ($8 \mathrm{GeV} \mathrm{H}^{-}$linac),
- Pion production per MW greatest at $\approx 8 \mathrm{GeV}$
- Together with accumulation in the Re-cycler
- 250 Tp per 3 ns bunch
severe space charge requires very large acceptance reduced by combining bunches after "trombone"

Different bunches kicked to different

- This driver could meet Factory requirement, but the reverse need not be true

Target and Capture

Mercury Jet Target, 20 T capture

Phase Rotation

Drifts \& Multiple frequency rf to Bunch, then Rotate

6D Cooling Several methods under study
a) "Guggenheim" Lattice

- Lattice arranged as 'Guggenheim' upward helix
- Bending gives dispersion
- Higher momenta pass through longer paths in wedge absorbers giving momentum cooling (emittance exchange)
- Starting at 201 MHz and 3 T , ending at 805 MHz a
e.g. 805 MHz 10 T cooling to 400 mm mrad

b) Snake

- Tilted alternating solenoids generate alternating dispersion
- Higher momenta pass through absorbers at steeper angles giving momentum cooling (emittance exchange)
- Lattice accepts both signs
- Starting at 201 MHz and 2.5 T , ending at 805 MHz and 10 T
- Works well for early cooling not yet achieved for later

c) Helical Cooling Channel (HCC)

- Muons move in helical paths in high pressure hydrogen gas
- Higher momentum tracks have longer trajectories giving momentum cooling (emittance exchanoe)

- Engineering integration of rf not well defined
- Possible problem of rf breakdown with intense muon beam transit

Final Transverse Cooling in High Field Solenoids

- Lower momenta allow transverse cooling to required low transverse emittance, but long emittance rises: Effectively reverse emittance exchange

- Need 1240 T (or fewer 50 T) solenoids
- ICOOL Simulation of cooling in solenoids
- Simulation of re-acceleration/matching started
- 45/50 T Solenoids ?
-45 T hybrid at NHMFL, but uses 25 W
- 30 T all HTS designed at NHMFL
- 40 T 'experiment' under construction

NHMFL 45 T Hybrid Magnet

ICOOL simulation, including matching, of last stage

- 50 T magnet design from PBL SBIR phase 1
- 1 MV/m Induction Linac

Acceleration

- Sufficiently rapid acceleration is straightforward in Linacs and Recirculating linear accelerators (RLAs) Using ILC-like 1.3 GHz rf
- Lower cost solution would use Pulsed Synchrotrons
- Pulsed synchrotron 30 to 400 GeV
(in Tevatron tunnel)
- Hybrid SC \& pulsed magnet synchrotron $400-900 \mathrm{GeV}$ (in Tevatron tunnel)

Collider Ring

- 1.5 TeV (c of m) Design

- Meets requirements at 1.5 TeV
- 4 TeV (c of m) 1996 design by Oide
- Meets requirements in ideal simulation
- But is too sensitive to errors to be realistic
- The experts believe that the required rings should be possible

- Sophisticated shielding designed in 19964 TeV Study
- GEANT simulations then indicated acceptable backgrounds
- Would be less of a problem now with finer pixel detectors

BUT

- Tungsten shielding takes up 10 degree cone

Layout of 3 TeV Collider using pulsed synchrotrons

R\&D AND EXPERIMENTS
 MERIT Experiment at CERN

Images of Jet Flow at Viewport 3, $B=10 \mathrm{~T}, \mathrm{~N}=10 \mathrm{Tp}, \mathrm{L}=17 \mathrm{~cm}, 2 \mathrm{~ms} /$ frame

- 15 T pulsed magnet
- 1 cm rad mercury jet
- Up to 30 Tp cf 40 Tp at 56 GeV
- Magnet lowers splash velocities
- Density persists for 100 micro sec
- No problems found

2) Muon Ionization Cooling Experiment (MICE) International collaboration at RAL, US, UK, Japan (Blondel)

- Will demonstrate transverse cooling in liquid hydrogen, including rf re-acceleration
- Uses a different version of 'Guggenheim' lattice

- Early Experiment to demonstrate Emittance Exchange
- Dispersion by weighting
- Cooling in all dimensions
- But no re-acceleration

HTS R\&D towards a 40 T solenoid

MuCool, and MuCool Test Area (MTA) at FNAL International collaboration US, UK, Japan (Bross)

- Liquid hydrogen absorber tested
- Open \& pillbox 805 MHz cavities in magnetic fields to 4 T
- 201 MHz cavity tested to magnetic field of 0.7 T Later to 2T
- High pressure H 2 gas 805 MHz pillbox cavity tested
- Soon: 805 MHz gas Cavity with proton beam

Technical challenge: rf breakdown in magnetic fields

1. "Dark Current" electrons accelerated and focused by magnetic field
2. Damage spots by thermal fatigue causing breakdown

Solution 1) Gas filled cavities show no such effect

- But a beam passing through may cause breakdown or rapid loss of rf
- Experiment to be performed in proton beam at Fermilab

Solution 2) Magnetic Insulation

- All tracks return to the surface \& Energies very low
- No dark current, No X-Rays, no danger of melting surfaces
- Rather certain to work but less efficient:
- Surface/acceleration fields worse for 'open' cavities
- Shunt impedance worse needing more rf power

Solution 3) Cavities made of Beryllium

- When cold (77 deg. K) conductivity is improved and α reduced

Conclusion on Baseline design

- All stages for a "baseline" design have been simulated at some level
- Matching and tapering of 6D cooling remains to be designed
- Good collider ring design exist for both 1.5 TeV
- 3 TeV design under study
- Detector design and shielding has been studied in 1996 and now restarted
- The biggest technical problem is rf breakdown in magnetic fields but multiple solutions are under study

Muon Accelerator Program (MAP) submitted to DoE Administered by FNAL, but National Program, with International Collaboration (Interim Directors: Steve Geer, Mike Zisman)

A Choice of staged or direct path

Expecting funding $10 \mathrm{M} \$ \rightarrow 16 \mathrm{M} \$$

2 DEFINITIONS AND UNIT CONVENTIONS

Units

When discussing the motion of particles in magnetic fields, I will use MKS units, but this means that momentum, energy, and mass are in Joules and kilograms, rather than in the familiar 'electron Volts'. To make the conversion easy, I will introduce these quantities in the forms: $[p c / e],[E / e]$, and $\left[m c^{2} / e\right]$, respectively. Each of these expressions are then in units of straight Volts corresponding to the values of p, E and m expressed in electron Volts. For instance, I will write, for the bending radius in a field B :

$$
\begin{equation*}
\rho=\frac{[p c / e]}{B c} \tag{8}
\end{equation*}
$$

meaning that the radius for a $3 \mathrm{GeV} / \mathrm{c}$ particle in 5 Tesla is

$$
\rho=\frac{310^{9}}{5 \times 310^{8}}=2 m
$$

Emittance

Emittances will always be assumed to be normalized rms values

$$
\begin{equation*}
\epsilon=\text { normalized emittance }=\frac{[\text { Phase Space Area c/e }]}{\pi\left[\mathrm{mc}^{2} / \mathrm{e}\right]} \tag{9}
\end{equation*}
$$

The phase space can be transverse: p_{x} vs x, p_{y} vs y, or longitudinal Δp_{z} vs z, where Δp_{z} and z are with respect to the moving bunch center.
If x and p_{x} are both Gaussian and uncorrelated, then the area is that of an upright ellipse, and:

$$
\begin{align*}
& \epsilon_{\perp}=\frac{\pi \sigma_{[p c / e]_{\perp}} \sigma_{x}}{\pi\left[m c^{2} / e\right]}=\left(\gamma \beta_{v}\right) \sigma_{\theta} \sigma_{x} \tag{m}\\
& \epsilon_{\|}=\frac{\pi \sigma_{[p c / e]_{\|}} \sigma_{z}}{\pi\left[m c^{2} / e\right]}=\left(\gamma \beta_{v}\right) \frac{\sigma_{p}}{p} \sigma_{z} \tag{11}\\
& \epsilon_{6}=\epsilon_{\perp}^{2} \quad \epsilon_{\|} \quad(m)^{3}
\end{align*}
$$

The subscript v on β_{v} indicates that $\beta_{v}=v / c$.
Un-normalize emittances $\epsilon_{o}=\sigma_{\theta} \sigma_{x}$, are often used, but not by me.

For an upright phase ellipse in x^{\prime} vs x,

$$
\begin{equation*}
\beta_{\perp}=\left(\frac{\text { width }}{\text { height }} \text { of phase ellipse }\right)=\frac{\sigma_{x}}{\sigma_{\theta}} \tag{13}
\end{equation*}
$$

Then, using the emittance definition:

$$
\begin{gather*}
\sigma_{x}=\sqrt{\epsilon_{\perp} \beta_{\perp} \frac{1}{\beta_{v} \gamma}} \tag{14}\\
\sigma_{\theta}=\sqrt{\frac{\epsilon_{\perp}}{\beta_{\perp}} \frac{1}{\beta_{v} \gamma}} \tag{15}
\end{gather*}
$$

$\beta_{\text {lattice }}$ can also be defined for a repeating lattice, where it is that $\beta_{\text {beam }}$ that is matched to the lattice. Equation 14, but not eq. 15 are valid even when the ellipse is tilted.
$\beta_{\perp}\left(\right.$ or $\left.\beta^{*}\right)$ beam at focus

$$
\sigma_{x}=\sigma_{o} \sqrt{1+\left(\frac{z}{\beta^{*}}\right)^{2}}
$$

From eqiation 14

$$
\beta_{x}=\beta^{*}\left(1+\left(\frac{z}{\beta^{*}}\right)^{2}\right)
$$

β^{*} is like a depth of focus

As $z \rightarrow \infty$

$$
\sigma_{x} \rightarrow \frac{\sigma_{o} z}{\beta^{*}}
$$

giving an angular spread of

$$
\theta=\frac{\sigma_{o}}{\beta^{*}}
$$

as above in eq. 13

β_{\perp} of a Lattice

β_{\perp} above was defined by the beam, but a lattice or ring has a β_{o} that may or may not "match" the β_{\perp} of the beam.
e, g. if a continuous inward focusing force, then there is a periodic solution:

$$
u=A \sin \left(\frac{z}{\beta_{o}}\right) \quad u^{\prime}=\frac{A}{\beta_{0}} \cos \left(\frac{z}{\beta_{0}}\right)
$$

In the u^{\prime} vs. u plane, this motion is also an ellipse with

$$
\frac{\text { width }}{\text { height }}=\frac{\hat{u}}{\hat{u^{\prime}}}=\beta_{o}
$$

If we have many particles with β_{\perp} (beam) $=\beta_{o}$ (lattice) then all particles move arround the ellipse, the shape, and thus β_{\perp} (beam) remains constant, and the beam is "matched" to this lattice.
If the beam's β_{\perp} (beam) $\neq \beta_{0}$ of the lattice then β_{\perp} (beam) oscillates about β_{o} (lattice): often refered to as a "beta beat".

Useful Relativistic Relations

$$
\begin{align*}
d E & =\beta_{v} d p \tag{16}\\
\frac{d E}{E} & =\beta_{v}^{2} \frac{d p}{p} \tag{17}\\
d \beta_{v} & =\frac{d p}{\gamma^{2}} \tag{18}
\end{align*}
$$

I use β_{v} to denote v / c to distinguish it from the Courant-Schneider or Twiss parameters β_{\perp}

з SOLENOID FOCUSING

1) x , y motion in Long Solenoid ($B_{Z}=$ constant $)$

Consider motion in a fixed axial filed B_{z}, starting on the axis O with finite transverse momentum p_{\perp} i.e. with initial angular momentum $=0$.

$$
\begin{gather*}
\rho=\frac{[p c / e]_{\perp}}{c B_{z}} \tag{19}\\
x=\rho \sin (\psi) \\
y=\rho(1-\cos (\psi))
\end{gather*}
$$

2) x, y motion in Long Solenoid ($B_{Z}=$ constant $)$

$$
p_{\phi}=p_{\perp} \sin (\phi)
$$

and from eq. 20

$$
\begin{gathered}
r=2 \rho \sin (\phi) \\
p_{\phi}=p_{\perp} \frac{r}{2 \rho}
\end{gathered}
$$

and from eq. 19

$$
\begin{gather*}
\rho=\frac{[p c / e]_{\perp}}{c B_{z}} \\
p_{\phi}=\frac{p_{\perp}}{2 \rho} \tag{21}
\end{gather*}
$$

Suppose:

- I start with a parallel beam $\left(p_{\perp}=0\right)$
- and enter the solenoid at location A
- I will cross some radial fields as I enter

Entering solenoid

$$
\begin{aligned}
\Delta[p c / e]_{\phi} & =\int B_{r} d z \\
& =-\frac{r c}{2} \Delta B_{z}
\end{aligned}
$$

This is exact, so if the particle has no initial angular momentum

$$
\begin{equation*}
[p c / e]_{\phi}=-\frac{r c}{2} B_{z} \tag{23}
\end{equation*}
$$

This is exactly that needed (21) to make a helix that passes through the axis O

If we define a coordinate system u, v that is rotated about the axis by the above angle ϕ, then in that frame a particle starting without angular momentum and $u=0, \dot{u}=0$ remains in the plane $u=0$ plane. This is the Larmor frame.

For fixed B_{z}

If The center of the solenoid magnet is at O, then consider a plane that contains this axis and the particle. This, for a particle with initially no angular momentum, is the 'Larmor Plane:

$$
\begin{equation*}
\beta_{\text {Helix }}=\frac{d z}{d \psi}=\rho \frac{p_{z}}{p_{\perp}}=\frac{[p c / e]_{z}}{c B_{z}} \tag{24}
\end{equation*}
$$

y v
th

y v

y v

y v

y v

y v

y v

Larmor Theorem

Motion of a charged particle in any axial symmetric solenoid fields $B_{z}(z)$ is given by that of a particle moving with the same p_{z} in a u, v frame rotating about that axis by

$$
\frac{d \phi}{d z}=-\frac{c B_{z}}{2[p c / e]_{z}}
$$

under a focusing 'force' towards the axis giving bending

$$
\frac{1}{\eta}=\frac{d^{2} r}{d z^{2}}=-\left(\frac{c B_{z}}{2[p c / e]}\right)^{2} r
$$

r is the distance to the axis and $[p c / e]$ is the momentum component perpendicular to r

This being true with any initial angular momentum and thus motions unconfined by either $u=0$ or $v=0$ planes

Compared with a focusing quadrupole

$$
\frac{1}{\eta}=\frac{d^{2} r}{d z^{2}}=-\left(\frac{G c}{[p c / e]}\right) r
$$

Note how the focusing now $\propto B^{2} / p^{2}$

- independent of sign
- weak for high momenta

Conclusion on solenoid focusing

- In a uniform solenoid field a particle moves in a helix of wavelength $\lambda_{\text {helix }}$
- But in the rotating larmor plane it oscillates with wavelength $\lambda_{\text {larmor }}=2 \lambda_{\text {helix }}$
- Even with non uniform fields, motion in the larmor plane:
- Focus is always towards the axis
- With a 'force' $\propto B^{2} / p^{2}$
- If a particle starts in the Larmor plane, it stays in that plane
- Since a solenoid focuses with a 'force' $\propto B^{2} / p^{2}$, compared with a quadrupole 'force' $\propto B / p$, the solenoid is always stronger at a low enough momenta and Solenoids focus in both planes, whereas quadrupoles focus in one and defocus in the other
- A solenoid can focus very large transverse emittances, with angles of a radian or more, which makes solenoids the preferred focusing in ionization cooling

4 TRANSVERSE IONIZATION COOLING

$p_{\|}$restored
p_{\perp} still less

Cooling rate vs. Energy

$$
\text { (eq 10) } \quad \epsilon_{x, y}=\gamma \beta_{v} \sigma_{\theta} \sigma_{x, y}
$$

If there is no Coulomb scattering, or other sources of emittance heating, then σ_{θ} and $\sigma_{x, y}$ are unchanged by energy loss, but p and thus $\beta \gamma$ are reduced. So the fractional cooling $d \epsilon / \epsilon$ is (using eq.17):

$$
\begin{equation*}
\frac{d \epsilon}{\epsilon}=\frac{d p}{p}=\frac{d E}{E} \frac{1}{\beta_{v}^{2}} \tag{28}
\end{equation*}
$$

which, for a given energy change, strongly favors cooling at low energy.

Heating Terms

$$
\epsilon_{x, y}=\gamma \beta_{v} \sigma_{\theta} \sigma_{x, y}
$$

Between scatters the drift conserves emittance (Liouiville).
When there is scattering, $\sigma_{x, y}$ is conserved, but σ_{θ} is increased.

$$
\begin{gathered}
\Delta\left(\epsilon_{x, y}\right)^{2}=\gamma^{2} \beta_{v}^{2} \sigma_{x, y}^{2} \Delta\left(\sigma_{\theta}^{2}\right) \\
2 \epsilon \Delta \epsilon=\gamma^{2} \beta_{v}^{2}\left(\frac{\epsilon \beta_{\perp}}{\gamma \beta_{v}}\right) \Delta\left(\sigma_{\theta}^{2}\right) \\
\Delta \epsilon=\frac{\beta_{\perp} \gamma \beta_{v}}{2} \Delta\left(\sigma_{\theta}^{2}\right)
\end{gathered}
$$

e.g. from Particle data booklet $\quad \Delta\left(\sigma_{\theta}^{2}\right) \approx\left(\frac{14.110^{6}}{[p c / e] \beta_{v}}\right)^{2} \frac{\Delta s}{L_{R}}$

$$
\begin{gather*}
\Delta \epsilon=\frac{\beta_{\perp}}{\gamma \beta_{v}^{3}} \Delta E\left(\left(\frac{14.110^{6}}{2\left[m c^{2} / e\right]_{\mu}}\right)^{2} \frac{1}{L_{R} d E / d s}\right) \\
\text { Defining } \quad C(m a t, E)=\frac{1}{2}\left(\frac{14.110^{6}}{\left.\left[m c^{2} / e\right]_{\mu}\right)}\right)^{2} \frac{1}{L_{R} d \gamma / d s} \\
\text { then } \frac{\Delta \epsilon}{\epsilon}=d E \frac{\beta_{\perp}}{\epsilon \gamma \beta_{v}^{3}} C(m a t, E) \tag{29}
\end{gather*}
$$

Equilibrium emittance

Equating this with equation 28

$$
d E \frac{1}{\beta_{v}^{2} E}=d E \frac{\beta_{\perp}}{\epsilon \gamma \beta_{v}^{3}} C(\text { mat }, E)
$$

gives the equilibrium emittance $\epsilon_{o}: \quad \epsilon_{x, y}($ min $)=\frac{\beta_{\perp}}{\beta_{v}} C($ mat,$E)$

At energies for minimum ionization loss:

material	T ${ }^{o} \mathrm{~K}$	density $\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{dE} / \mathrm{dx}$ $\mathrm{MeV} / \mathrm{m}$	L_{R} m	C_{o} 10^{-4}
Liquid H_{2}	20	71	28.7	8.65	38
Liquid He	4	125	24.2	7.55	51
LiH	300	820	159	0.971	61
Li	300	530	87.5	1.55	69
Be	300	1850	295	0.353	89
Al	300	2700	436	0.089	248

As a function of energy:

Liquid Hydrogen is far the best material, but has cryogenic and safety complications, and requires windows which will significantly degrade the performance. At lower energies C is much lower but there is then longitudinal (dp / p) heating.

Rate of Cooling

$$
\begin{equation*}
\frac{d \epsilon}{\epsilon}=\left(1-\frac{\epsilon_{\min }}{\epsilon}\right) \frac{d p}{p} \tag{32}
\end{equation*}
$$

One might think one should keep $\epsilon_{\min } \ll \epsilon$, but this generally gives problems from non-linearities with the required large beam divergence angles σ_{θ} required.

Beam Divergence Angles

$$
\sigma_{\theta}=\sqrt{\frac{\epsilon_{\perp}}{\beta_{\perp} \beta_{v} \gamma}}
$$

so, from equation 31, for a beam in equilibrium

$$
\begin{equation*}
\sigma_{\theta}=\sqrt{\frac{C(m a t, E)}{\beta_{v}^{2} \gamma}} \tag{33}
\end{equation*}
$$

and for 50% of maximum cooling rate and an aperture at 3σ, the angular aperture \mathcal{A} of the system must be

$$
\begin{equation*}
\mathcal{A}=3 \sqrt{2} \sqrt{\frac{C(m a t, E)}{\beta_{v}^{2} \gamma}} \tag{34}
\end{equation*}
$$

Apertures for hydrogen and lithium are plotted vs. energy below. These are very large angles, and if we limit apertures to less than 0.3, then this requirement sets lower energy limits of about $100 \mathrm{MeV}(\approx 170 \mathrm{MeV} / \mathrm{c})$ for Lithium, and about $25 \mathrm{MeV}(\approx 75 \mathrm{MeV} / \mathrm{c})$ for hydrogen.
$\theta=0.3$ may be about as large as is possible in a lattice, but larger angles may be sustainable in a continuous focusing system such as a lens or solenoid. is optimistic, as we will see in the tutorial.

Focusing as a function of the beam momentum

From eq.??

$$
\begin{gather*}
\beta_{\perp}=\frac{2[p c / e]}{c B_{s o l}} \\
\epsilon_{x, y}(\min)=C(\text { mat }, E) \frac{2 \gamma\left[m c^{2} / e\right]_{\mu}}{B_{\text {sol }} c} \tag{35}
\end{gather*}
$$

We see that at momenta where longitudinal emittance is not blown up ($\approx 200 \mathrm{MeV} / \mathrm{c}$) then even at 50 T the minimum emittance
is $\approx 100 \mu \mathrm{~m} \quad \gg$ required $25 \mu \mathrm{~m}$
But if we allow longitudinal heating and use very low momenta (45-62 MeV/c or 9-17 MeV) the muon collider requirements can be met

Decreasing beta in Solenoids by adding periodicity

In practice, the solenoigopiepty our homework will show how this occurs

Super FOFO

Double periodicity

- Beta lower over finite momentum range
- Beta lower by about $1 / 2$ solenoid

SFOFO Lattice Engineering Study 2 at Start of Cooling

- This is the lattice to be tested in Muon lonization Cooling Experiment (MICE) at RAL
- In study 2 the lattice is modified vs. length to lower β_{\perp} as ϵ falls

This keeps σ_{θ} and ϵ / ϵ_{o} more or less constant, thus maintains cooling rate

Performance

Conclusion on transverse cooling

- Hydrogen (gas or liquid) is the best material to use
- Cooling requires very large angular acceptances -
- Only realistically possible in solenoid focused systems
- Adding periodicity lowers the β_{\perp} for a given solenoid field
- But periodicity does reduce momentum acceptance
- Final cooling to $25 \mu \mathrm{~m}$ possible at 50 T and low energies but longitudinal emittance then rises

5 LONGITUDINAL IONIZATION COOLING

Following the convention for synchrotron cooling we define partition functions:

$$
\begin{gather*}
J_{x, y, z}=\frac{\frac{\Delta\left(\epsilon_{x, y, z}\right)}{\epsilon_{x, y, z}}}{\frac{\Delta p}{p}} \tag{36}\\
J_{6}=J_{x}+J_{y}+J_{z} \tag{37}
\end{gather*}
$$

where the $\Delta \epsilon$'s are those induced directly by the energy loss mechanism (ionization energy loss in this case). Δp and p refer to the loss of momentum induced by this energy loss.

In electron synchrotrons, with no gradients fields, $J_{x}=J_{y}=1$, and $J_{z}=2$.
In muon ionization cooling, $J_{x}=J_{y}=1$, but J_{z} is negative or small.

Transverse cooling with $J_{x, y} \neq 1$

From last lecture:

$$
\frac{\Delta \sigma_{p \perp}}{\sigma_{p \perp}}=\frac{\Delta p}{p}
$$

and $\sigma_{x, y}$ does not change, so

$$
\frac{\Delta \epsilon_{x, y}}{\epsilon_{x, y}}=\frac{\Delta p}{p}
$$

and thus

$$
\begin{equation*}
J_{x}=J_{y}=1 \tag{38}
\end{equation*}
$$

But if $J_{x, y} \neq 1$

$$
\begin{equation*}
\frac{\Delta \epsilon_{x, y}}{\epsilon_{x, y}}=\frac{1}{J_{x, y}} \frac{\Delta p}{p} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{x, y}(\min)=\frac{\beta_{\perp}}{J_{x, y} \beta_{v}} C(\text { mat }, E) \tag{40}
\end{equation*}
$$

Longitudinal cooling/heating from shape of $\mathrm{dE} / \mathrm{dx}$

The emittance in the longitudinal direction ϵ_{z} is (eq.11):

$$
\epsilon_{z}=\gamma \beta_{v} \frac{\sigma_{p}}{p} \sigma_{z}=\frac{1}{m} \sigma_{p} \sigma_{z}=\frac{1}{m} \sigma_{E} \sigma_{t}=c \sigma_{\gamma} \sigma_{t}
$$

where σ_{t} is the rms bunch length in time, and c is the velocity of light. Drifting between interactions will not change emittance (Louville), and an interaction will not change σ_{t}, so emittance change is only induced by the energy change in the interactions:

$$
\frac{\Delta \epsilon_{z}}{\epsilon_{z}}=\frac{\Delta \sigma_{\gamma}}{\sigma_{\gamma}}=\frac{\sigma_{\gamma} \Delta s \frac{d(d \gamma / d s)}{d \gamma}}{\sigma_{\gamma}}=\Delta s \frac{d(d \gamma / d s)}{d \gamma}
$$

and

$$
\frac{\Delta p}{p}=\frac{\Delta \gamma}{\beta_{v}^{2} \gamma}=\frac{\ell}{\beta_{v}^{2} \gamma}\left(\frac{d \gamma}{d s}\right)
$$

So from the definition of the partition function J_{z} :

$$
\begin{equation*}
\underline{\Delta \epsilon_{z}} \quad(\Delta s \underline{d(d)} \tag{41}
\end{equation*}
$$

A typical relative energy loss as a function of energy is shown above (this example is for Lithium). It is given approximately by:

It is seen that J_{z} is strongly negative at low energies (longitudinal heating), and is only barely positive at momenta above $300 \mathrm{MeV} / \mathrm{c}$. In practice there are many reasons to cool at a moderate momentum around $250 \mathrm{MeV} / \mathrm{c}$, where $J_{z} \approx 0$. However, the 6D cooling is still strong $J_{6} \approx 2$.

Emittance Exchange

What is needed is a method to exchange cooling between the transverse and longitudinal direction s. This is done in synchrotron cooling if focusing and bending is combined, but in this case, and in general, one can show that such mixing can only increase one J at the expense of the others: J_{6} is conserved.

$$
\begin{equation*}
\Delta J_{x}+\Delta J_{x}+\Delta J_{x}=0 \tag{42}
\end{equation*}
$$

and for typical operating momenta:

$$
\begin{equation*}
J_{x}+J_{y}+J_{z}=J_{6} \approx 2.0 \tag{43}
\end{equation*}
$$

Longitudinal cooling with wedges and Dispersion

For a wedge with center thickness ℓ and height from center $h(2 h \tan (\theta / 2)=\ell)$, in dispersion $D\left(D=\frac{d y}{d p / p}\right.$, or with eq.17: $\left.D=\beta_{v}^{2} \frac{d y}{d \gamma / \gamma}\right)$ (see fig. above):

$$
\frac{\Delta \epsilon_{z}}{\epsilon_{z}}=\frac{\Delta \sigma_{\gamma}}{\sigma_{\gamma}}=\frac{\sigma_{\gamma} \frac{d s}{d \gamma}\left(\frac{d \gamma}{d s}\right)}{\sigma_{\gamma}}=\frac{d s}{d \gamma}\left(\frac{d \gamma}{d s}\right)=\left(\frac{\ell}{h}\right) \frac{D}{\beta_{v}^{2} \gamma}\left(\frac{d \gamma}{d s}\right)
$$

and

$$
\frac{\Delta p}{p}=\frac{\Delta \gamma}{\beta_{v}^{2} \gamma}=\frac{\ell}{\beta_{v}^{2} \gamma}\left(\frac{d \gamma}{d s}\right)
$$

So from the definition of the partition function J_{z} :

$$
\begin{gather*}
\Delta J_{z}(\text { wedge })=\frac{\frac{\Delta \epsilon_{z}}{\epsilon_{z}}}{\frac{\Delta p}{p}}=\frac{\left(\frac{\ell}{h}\right) \frac{D}{\beta_{v}^{2} \gamma}\left(\frac{d \gamma}{d s}\right)}{\frac{\ell}{\beta_{v}^{2} \gamma}\left(\frac{d \gamma}{d s}\right)}=\frac{D}{h} \quad\left(\text { for simple bend } \& \text { gas } \Delta J_{z}(\text { wedge })=1\right) \tag{44}\\
J_{z}=J_{z}(\text { no wedge })+\Delta J_{z}(\text { wedge }) \tag{45}
\end{gather*}
$$

But from eq.42, for any finite J_{z} (wedge), J_{x} or J_{y} will change in the opposite direction.

Longitudinal Heating Terms

Since $\epsilon_{z}=\sigma_{\gamma} \sigma_{t} c$, and t and thus σ_{t} is conserved in an interaction

$$
\frac{\Delta \epsilon_{z}}{\epsilon_{z}}=\frac{\Delta \sigma_{\gamma}}{\sigma_{\gamma}}
$$

Straggling : $\quad \Delta\left(\sigma_{\gamma}\right) \approx \frac{\Delta \sigma_{\gamma}^{2}}{2 \sigma_{\gamma}} \approx \frac{1}{2 \sigma_{\gamma}} 0.06 \frac{Z}{A}\left(\frac{m_{e}}{m_{\mu}}\right)^{2} \gamma^{2}\left(1-\frac{\beta_{v}^{2}}{2}\right) \rho \Delta s$
$\Delta E=E \beta_{v}^{2} \frac{\Delta p}{p}$, so:

$$
\Delta s=\frac{\Delta E}{d E / d s}=\frac{1}{d E / d s} E \beta_{v}^{2} \frac{\Delta p}{p}
$$

so

$$
\frac{\Delta \epsilon_{z}}{\epsilon_{z}}=\frac{0.06}{2 \sigma_{\gamma}^{2}} \frac{Z}{A}\left(\frac{m_{e}}{m_{\mu}}\right)^{2} \gamma^{2}\left(1-\frac{\beta_{v}^{2}}{2}\right) \rho \frac{\beta_{v}^{2} E}{d E / d s} \frac{\Delta p}{p}
$$

This can be compared with the cooling term

$$
\frac{\Delta \epsilon_{z}}{\epsilon_{z}}=-J_{z} \frac{d p}{p}
$$

giving an equilibrium : $\quad \frac{\sigma_{p}}{p}=\left(\left(\frac{m_{e}}{m_{\mu}}\right) \sqrt{\frac{0.06 Z \rho}{2 A(d \gamma / d s)}}\right) \sqrt{\frac{\gamma}{\beta_{v}^{2}}\left(1-\frac{\beta_{v}^{2}}{2}\right) \frac{1}{J_{z}}}$

For Hydrogen, the value of the first parenthesis is $\approx 1.36 \%$.
Without coupling, J_{z} is small or negative, and the equilibrium does not exist. But with equal partition functions giving $J_{z} \approx 2 / 3$ then this expression, for hydrogen, gives: the values plotted below.
The following plot shows the dependency for hydrogen

It is seen to favor cooling at around $200 \mathrm{MeV} / \mathrm{c}$, but has a broad minimum.

Longitudinal Cooling Conclusion

- Good cooling in 6 D in a ring
- But injection/extraction difficult
- Requires short bunch train
- Also good 6D cooling in HP Gas Helix (not discussed here)
- But difficult to introduce appropriate frequency rf
- And questions about use of gas with an ionizing beam
- Converting Ring cooler to a large Helix (Guggenheim)
- Solves Injection/extraction problem
- Solves bunch train length problem
- Allows tapering to improve performance
- But more expensive than ring

