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Introduction

• A large number of dynamic imperfections exist

e.g. ground motion, RF phase and amplitude jitter, element transverse jitter,
magnet strength jitter, . . .

• They lead to luminosity reduction and fluctuation

- but they can also impact correction of other imperfections

• Main mitigation is via hardware design/stabilisation and beam-based feedback

• Dynamic effects need to be addressed across the whole machine

- but can start looking at individual areas, e.g. main linac
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CLIC Example of Fast Imperfection Tolerances

• Many sources exist

Source Luminosity budget Tolerance
Damping ring extraction jitter 1%
Magnetic field variations ?%
Bunch compressor jitter 1%

Quadrupole jitter in main linac 1%
∆ǫy = 0.4 nm

σjitter ≈ 1.8 nm

Structure pos. jitter in main linac 0.1%
∆ǫy = 0.04 nm

σjitter ≈ 800 nm

Structure angle jitter in main linac 0.1%
∆ǫy = 0.04 nm

σjitter ≈ 400 nradian
RF jitter in main linac 1%

Crab cavity phase jitter 1% σφ ≈ 0.01◦

Final doublet quadrupole jitter 1% σjitter ≈ 0.1 nm

Other quadrupole jitter in BDS 1%
. . . ?%
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Typical Time Dependence of Imperfections

• Neglect the potential spatial correlation, consider element j at timestep i + 1

• γ is a Gaussian random number

• Independent jitter (white noise)

yi+1,j = γi+1,j

the element jitters around a fixed position

• Random walk (attention, also called drift)

yi+1,j = yi,j + γi+1,j

the element moves around the new position

• Systematic drift
yi+1,j = yi,j + δj

the element moves systematically in one direction
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What is Needed to Characterise the Imperfection?

• Example of ground motion

• We need full model of imperfections

- ground motion

- transfer through girder and elements

- active stabilisation feedback (CLIC)
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Example Imperfection: Ground Motion and Mechanics
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A Simple Ground Motion Model

• For times of the order of seconds ground motion can be approximated by the ATL
model

- the relative RMS motion of two points separated by L, after the time T is given
by

〈(∆y)2〉 = ATL

where A is a site dependent parameter

• The ATL-law represents a relative motion of points as a random walk in time and
space

- for element j + 1 at timestep i + 1 it can be simulated as

yi+1,j+1 = yi,j+1 + yi+1,j − yi,j +
√

A∆t(sj+1 − sj)γi+1,j+1
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A More Complete Ground Motion Model

• Especially for short times the motion of different points can be correlated

• This can be modelled as waves of ground motion, which are described by by mode
spectrum C(ω, λ)

• This can be modelled as

y(s, t) =
Nk,Nl

∑

k,l
Ckl [sin(ωkt) sin(kls + φkl) + (cos(ωkt) − 1) sin(kls + ψkl)]

• This can be simulated, some tricks are useful to improve the efficiency of the
calculation

D. Schulte, 5th Linear Collider School 2010, Main Linac A1 8



Example of Technical Noise

• Measurements in this ex-
ample can be well approx-
imated by

a(ω) =
a0

1 +
(

ω
ω0

)6

• That means technical
noise looks like random
pulse to pulse jitter
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Ground Motion Correlations
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Ground Motion Correlations
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Impact of the Supporting Girder

• The quadrupole

• The impact of the supporting girder can be characterised by the simple model

T (ω) = a(ω) exp(iφ(ω))

original ground noise P0 becomes P at quadrupole

P (ω) = |T (ω)|2P0(ω)
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Example Transfer Function

• A very simple model is that of a harmonic oscillator

- the support is the spring

- generally can calculate resonance frequencies but the damping is more difficult

• Generally:

- full transmission for low frequencies

- suppression of high frequencies

- resonances in between

D. Schulte, 5th Linear Collider School 2010, Main Linac A1 13



Oscillation Modes
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Active Stabilisation

• Need sensors and correctors

- can measure acceleration

⇒ feedback works for high frequencies

⇒ but not for low frequencies
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Main Linac Quadrupole Support

• Mechanical stabilisation is
essential

• Two concepts have been
developed

- soft support (Annecy)

- rigid support (CERN)

C. Hauviller, K. Artoos, Ch. Collette et al.
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Time Dependent Luminosity Loss/Emittance Growth

• Luminosity for first time step is ∆L0, starting from static machine

• Luminosity loss/emittance growth are quadratic with the size of the imperfection
(for small enough range)

• For the different dynamic imperfection types we find (in linear approximation)

- pulse-to-pulse jitter
〈∆Ln〉 = ∆L0

- ATL like motion
〈∆Ln〉 = n∆L0

- slow drifts
〈∆Ln〉 = n2∆L0

- for mode model situations is somewhat complex

- feedback cannot help in the first case
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Example: Quadrupole Jitter

• Want to estimate relative beam jitter ∆ at the end of the linac due to quadrupole
jitter δ

• Calculate the normalised local kick
∆y′i
√

ǫy
βyγ

=
δi
fi

1
√

ǫy
βy,iγi

• For the RMS we sum over all quadrupoles leads to
〈∆2

σ2
y

〉

=
n

∑

i=0

δ2
i

f 2
i

βy,iγi
ǫy

sin2(φf − φi)

• To simplify, we approximate the sum over sin2 with 1/2, since

1

2π

∫ 2π

0
sin2(x)dx =

1

2
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Calculation of the Average Beta-Function

• Want to calculate the effective mean beta-function

β =
1

2

(

β̂ + β̌
)

we use

β̂ = L
κ(κ + 1)√
κ2 − 1

β̌ = L
κ(κ− 1)√
κ2 − 1

with κ = 2f
L , which yields

β = L
κ2

√
κ2 − 1

which could also be written as

β = L
4f

2

L2
√

4f
2

L2 − 1
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Application to CLIC

• We replace the sum with an integral for CLIC

f = f0

√

√

√

√

√

E

E0
L = L0

√

√

√

√

√

E

E0

with L0 = 1.5 m and f0 = 1.3 m

〈∆2

σ2
y

〉

≈ δ2

2ǫy

∫ Ef

E0

L
4f2

L2
√

4f2

L2 − 1

E
mc2

f 2
0
E
E0

1

L

1

ηfilleG
dE

⇒
〈∆2

σ2
y

〉
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2ǫy

1

f 2
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1
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0
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0

√

√

√

√

4f2
0
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0

− 1

E0

mc2
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y

〉

≈ δ2
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1

f 2
0
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0
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0

√

√

√
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0
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0
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〈∆2
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≈ 0.025





δ
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2
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Feedback
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Stability and Feedback

• Stability is required to avoid luminosity degradation of a tuned machine

- beam-based feedback will be used for low-frequency motion

- typical luminosity with feedback is loss

∆Ltotal = ∆Luncorr(g) + ∆Lnoise(g) + ∆Lresidual(t)

∆Luncorr actual dynamic effect that is not yet corrected/amplified
How fast does the feedback need to be?

∆Lnoise feedback tries to correct dynamic effect that is faked by diagnostics
noise
How good does the feedback need to be?

∆Lresidual local feedback cannot correct all global effects
For how long is the feedback sufficient?
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Difference between ILC and CLIC

• In ILC, the long bunch separation allows for intra-train feedback at the end of the
main linac

⇒ relevant measure is the emittance growth

⇒ speed of convergence is also important

• In CLIC the train is too short

⇒ relevant is the multi-pulse emittance

- the projected emittance of subsequent pulses overlayed
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Most Simple Feedback Example

• Correct pulse to pulse

• Have a set of BPMs and a set of correc-
tors

• Know the effect of changing the current in
corrector i by δi leads to beam trajectory
change in BPM j of rj,i

• Unperturbed system prediction is then

yi−1 − yi = Rδi

• Correction is calculated as

δi = −gR−1
yi

R−1 is the pseudo-inverse

• For simplification assume that R−1 is the
inverse and is precisely known one finds

yi+1 = yi +Rδi = yi − gRR−1
yi = yi − gyi
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Simple Feedback Transfer Function

• The simplest feedback is
to use

yn+1 = yn − g × yn + γn

• In our linear case the feed-
back can be described by
its transfer function

p(ω) = p0(ω)|T (ω)|2

p noise with feedback

p0 noise without feed-
back

T feedback transfer
function

• Noise added by the feed-
back can also be written in
this form

p(ω) = p0(ω)|T (ω)|2 + p1(ω)

p1 noise added by feed-
back, e.g. BPM noise
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Simple Feedback Transfer Function Calculated

• The impact of a feedback can usually be described by the transfer function R in
frequency domain

X̃(ω) = T (ω)x̃(ω)

x is the motion with no feed back, X is the motion with feedback

• For our simple feedback we calculate T (ω)

Difference equation for our system is

Xn+1 −Xn = (xn+1 − xn) − gre(Xn)

for motion only at the frequency ω we exploit Xn+1 = Xn exp(−iω∆t) and xn+1 =

xn exp(−iω∆t)

⇒ (exp(−iω∆t) − 1)Xn = (exp(−iω∆t) − 1)xn − gre(Xn)

⇒ (exp(−iω∆t) − 1)T (ω)xn = (exp(−iω∆t) − 1)xn − gre(T (ω)xn)

to simplify our life we chose the moment where T (ω)xn is real

⇒ (exp(−iω∆t) − 1)T (ω) = (exp(−iω∆t) − 1) − gT (ω)

⇒ T (ω) = (exp(−iω∆t) − 1)/(exp(−iω∆t) − 1 + g)

• Test g = 0

T (ω) = 1

• Test ω∆t→ 0, g 6= 0

T (ω) = 0
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Examples for Simple Models

• The feedback will change the required stability

- look at ∆Luncorr(g) first

• The simplest feedback is to use

∆yn+1 = ∆yn − g × yn

• For the different noise types we find

- pulse-to-pulse jitter

∆L(n) = ∆L0 → ∆Luncorr = ∆L0
2

2 − g

- ATL like motion

∆L(n) = n∆L0 → ∆Luncorr = ∆L0
1

g(2 − g)

- slow drifts
∆L(n) = n2∆L0 → ∆Luncorr = ∆L0

1

g2
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Not Yet Corrected Growth Calculated

• Random walk
RMS offset is given by

〈∆x2〉 =
∞
∑

i=0
γ2
i σ

2(1 − g)2i

⇒ 〈∆x2〉 = σ2 1

g(2 − g)

• White noise
RMS offset is given by

〈∆x2〉 = γ2
0σ

2 + g2
∞
∑

i=1
γ2
i σ

2(1 − g)2(i−1)

⇒ 〈∆x2〉 = σ2 2

2 − g

• Systematic motion

〈∆x2〉 = (∆x0)
2





∞
∑

i=0
(1 − g)i





2

⇒ 〈∆x2〉 = σ2 1

g2
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Another Feedback Transfer Function

• Feedback with recursive
filter

an =
1

m
× yn +



1 − 1

m



 × an−1

∆yn+1 = ∆yn − an

• For slow drifts

∆Luncorr = ∆L0

⇒ good low frequency be-
haviour

• For jitter for large m

∆Luncorr ≈ 1.5∆L0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5

a/
a 0

f/f0

m=2
m=6

m=12

• For CLIC at 1 Hz amplification is 0.27 (m=12), 0.16 (m=6), 0.13 (m=2)

• At 4 Hz m=2 is marginal

• Will have to fold with ground motion/transfer function
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Example: Simplified Feedback Model

• Ignore incoming beam jitter

• Assume linear system response

• Home-made controller

- serious study of controler de-
sign started in Annecy (B.
Caron et al.)

⇒ integration needed
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Final Doublet Support

• Heavy
mass on a
spring

• Mechanical
low pass
filter

Alain Herve, Andrea Gaddi, Huber Gerwig
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Example: Pre-Isolator and ML Quadrupole

• Transfer functions are
known

- for the final doublet sup-
port (pre-isolator)

- for the main linac
quadrupoles

• Need to check, if model is
good enough

Transfer functions from F.
Ramos and Chr. Collette
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Pre-Isolator Result

• Consider only final doublet
with 5 nm RMS jitter

P (ω) = P0
1

1 +
(

ω
ω0

)6

ω0 = 40π

• Beam-based feedback
and pre-isolator

- two different controlers
used

⇒ Looks OK

〈y2〉 =
∫ ∞
0

|TB(ω)|2pQ(ω)+pN(ω)dω
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Main Linac
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Main Linac Feedback Strategy

• Stabilisation of elements using local mechanical feedback (CLIC only)

• Information from survey system is only recorded, not used directly (CLIC only)

• Intra-pulse beam feedback

- only possible in ILC (at CLIC at the interaction point)

• Pulse-to-pulse feedback

- main linac orbit feedback, RF phase and amplitude feedback

• Re-tuning

- slow process in the main linac

• Complex beam-based alignment and tuning

- not in normal running conditions

• Other feedback systems exist (e.g. RF feedback)

• Independent feedbacks on the same property will have to share the overall feed-
back bandwidth

⇒ try to combine as much as possible

- but need to know response
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Single vs Multiple Feedback Loops

• If independent feedback loops correct the
same thing the system can become insta-
ble

⇒ need to share bandwidth

⇒ correction becomes small
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Overall Fast Beam Feedback Design

• Main basis will be a fast BPM-based orbit feedback

⇒ feedback on same beam property at different locations

• Three alternatives considered

- chain of independent MIMOs, have to share bandwidth, slow

- chain of decoupled MIMOs, but no perfect decoupling (CLIC)

- single MIMO, model error needs to be studied

• Except for collision point beam position and angle will be corrected by each feed-
back
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Main Linac Feedback (CLIC)

• Comparison of decoupled
feedback and MIMO

- Nf = 40 feedback stations

- some quadrupole misalign-
ment, then feedback on sta-
ble machine

- perfect knowledge of re-
sponse assumed

• Corrector step size for feed-
back is 5 nm with 2 nm preci-
sion

- to avoid emittance growth
due corrector noise
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• Independent feedback loops slow convergence down

⇒ MIMO controler is better

- but system knowledge is important (also for decoupled feedback)
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Main Linac BPM Resolution

• The BPM resolution will limit the feedback bandwidth

• Assume pulse-to-pulse uncorrelated BPM readout jitter

• Emittance growth (corresponding to ∆Lnoise) can be estimated as function of gain
g by

∆ǫ = ∆ǫ0



g2
∞
∑

i=0
(1 − g)2i





∆ǫ = ∆ǫ0





g

2 − g





• For 100 nm resolution, the emittance growth is ∆ǫ0 ≈ 0.3 nm

⇒ Even for large gains g ≤ 1/2 the emittance growth should be small

• BPM resolution is determined by need to see beam jitter

- beam jitter is measured in vertically focusing quadrupoles

- beam is smallest at the end of the linac

- with βy ≈ 65 m and ǫy ≈ 10 nm we find σy ≈ 465 nm

⇒ require BPM resolution of about 50 nm
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Impact of Corrector Step Error

• The steps performed by the correctors may not be predictable

- will lead to additional emittance growth

• A random error in the corrector step can be regarded as quadrupole jitter

• A simple estimate of allowed error is given by

σstep ≈ σjitter

√

√

√

√

√

Nquad

Ncorrector

Ncorrector is the number of correctors used

• To be negligible for Ncorrector = 80 we require σstep < 5 nm

⇒ Should use minimum step size of ∆ = 5 nm to reduce impact of step size to much
less than quadrupole jitter

• Typical movements are some 100 nm (but site dependent)

- we require convergence between pulses

- stabilsation during correction with piezo movers is not obvious
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Time Dependent Residual Emittance Growth

• The residual emittance growth determines for how long the feedback is sufficient

• Use simple feedback
∆yn+1 = ∆yn − g × ∆yn + γn

• For the different dynamic imperfection types we find

- pulse-to-pulse jitter
∆Lresid,n ≈ 0

- ATL like motion
∆Lresid,n ≈ a× n∆L0

- slow drifts
∆Lresid,n ≈ a× n2∆L0

- Luminosity loss per timestep is ∆L0

- Feedback reduces emittance growth per time step by factor a
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Number of Feedback Stations and Residual Emittance Growth

• The residual emittance
growth is roughly

∆Lr ∝
1

N2
f

• For ATL motion and Nf =

40

∆Lr ≈ 0.2 × 10−3 nm/s

⇒ can run for some 1000 s  0.1

 1
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 0  10  20  30  40  50  60
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m

]

Nf

jitter
ATL

• A final feedback to re-steer to the original orbit is always included
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Determination of Response Matrix

• A correct response matrix is important for an efficient MIMO

• Can be determined by a dedicated measurement

- takes time

- machine might slowly drift away from measured response

• Solution is to introduce noise on purpose

- kick a beam at location s1

- apply another kick at s2 that should remove the beam oscillation

⇒ allows to measure response in this sector
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Example: Integrated Simulations for CLIC
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Impact of Ground Motion

• Assumed a direct one-
to-one transfer to beam
line elements and simpli-
fied feedback

• Stabilisation is air hook

⇒ A is good enough

⇒ B is marginal

⇒ B10 is bad
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⇒ A medium noisy site (B) is almost OK, if we stabilise the
final doublets
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Tolerance for Ground Motion

• Full simulation of the ma-
chine from start of linacs

• Determine amplitude for
10% luminosity loss

• No correction applied

⇒ Sine-like pertubations
(with respect to IP) are
more important

- beam-beam offset

⇒ Long wavelength are less
harmfull
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Fixed Final Doublet

• Full simulation of the ma-
chine from start of linacs
as before

• Final doublet plus multi-
poles are stabilised per-
fectly

⇒ For short wavelengths,
sine-like perturbations are
more important

⇒ For long wavelengths,
cosine-like perturbations
are more important

- machine moves away
from final doublets
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Results

• Final doublet is perfectly
stabilised

• Beam-based dead-beat
feedback

⇒ Ground motion model A
is worse than with beam
feedback only

- machiene drifts away
from final doublets

⇒ Other are also not good
enough

〈∆L〉 =
∫ ∫

P (ω, k)|T (ω)|2G(k)dkdω
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Reason for Luminosity Loss

• Ground motion B10 is
used

• The residual loss is still
dominated by frequencies
above about 10 Hz

⇒ The residual problem are
at frequencies above ≈
10 Hz
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Simplified Simulation Results

• Feedback directly applied to ground motion

- dead-beat controler used

• Mechnical stabilisation applied to everything

- only final doublet treated separately

• Ground motion model B10 used

• Results:

- only beam-based feedback: ∆L/L ≈ 60%

- stabilised final doublet: ∆L/L ≈ 30%

- also stabilised magnets: ∆L/L ≈ 3%

• Intra-pulse feedback will improve this (J. Resta Lopez)
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Some Results for ILC
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The Banana Effect

At large disruption, corre-
lated offsets in the beam
can lead to instability

The emittance growth in
the beam leads to correla-
tion of the mean y position
to z

a) shows development of
beam in the main linac

b) simplified beam-beam
calculation using projected
emittances

c) beam-beam calculation
with full correlation

⇒ Luminosity loss increased

⇒ Cure exists

a)

b)

c)

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

20 22 24 26 28 30

L 
[1

034
cm

-2
s-1

]

εy [nm]

L1
Loff

Lang
approx.

D. Schulte, 5th Linear Collider School 2010, Main Linac A1 52



Simplified Simulations of ILC Main Linac Quadrupole Jitter

• Simplified main linac lat-
tice with 32 cavities per
quadrupole

⇒ now 24 cavities per
quadrupole

• Simulation procedure

- emittance growth
in main linac with
PLACET

- simplified trajectory
feedback at end of ML

- simple transfer matrix to
IP

- beam-beam with
GUINEA-PIG
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Luminosity Loss Enhancement

⇒ Luminosity loss is en-
hanced with respect to
expectation from emit-
tance growth

⇒ Offset optimisation does
not improve beam-beam
feedback a lot

⇒ But angle optimisation
does

⇒ For larger emittance
growth loss enhancement
is reduced
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Dynamic Effects During Alignment
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Introduction

• Dispersion free steering uses beams at different energies to align quadrupoles

• They can be obtained using different gradients or bunch compressor settings

• Beam jitter during alignment fakes dispersion

- either accept

- or try to fit incoming beam trajectory

- or use different energies within single pulse

• Simulations done using simplified ILC lattice

• Nominal misalignments are used

- 1.5% RMS gradient jitter from RF unit
to RF unit

- 5% RMS random scale error of BPMs

• Small energy difference used

- gradient difference 1%

- first two units are off

⇒ alignment of first six quadrupoles not
treated

• Similar results for CLIC
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Quadrupole Jitter

• Very large quadrupole jit-
ter of 500nm added

⇒ Procedure with no fit suf-
fers most

⇒ Fit of incoming beam helps
a bit

⇒ Use of different energies in
single pulse is best

⇒ But could try better fit

⇒ Recommend to use en-
ergy difference within a
single pulse
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• correction can be performed with stable machine

• if spread can be reduced (better BPM resolution/averaging) or test bunches are
used (after main pulse) one could align during luminosity operation
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Summary

• Dynamic imperfections can have important impact on luminosity

- example is ground motion/element jitter

• Countermeasures are

- beam-based feedback

- stabilisation of hardware

• Calculations can be done in frequency domain for convenience
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Some Fun Stuff
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Main Linac Orbit Steering

• All quadrupoles could be
stabilised

- but in the long run they
follow the ground mo-
tion

• ATL-model used

⇒ emittance growth is lin-
ear with time

- one day simulated

• All focusing quadrupoles
used for steering in one-to-
one correction

⇒ Emittance growth is
∆ǫy,residual = 1 nm per day

• Mover step size of 10 nm is
noticeable in emittance
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Use of MICADO

• Try to find a small number
m of most effective correc-
tors

• Simulation performed us-
ing

- one-to-one correction
with given step size

- then some iterations of
MICADO

⇒ Significantly larger correc-
tor step size are allowed
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• In principle, MICADO can replace the one-to-one steering

- speed of correction should be largely unaffected

• The main problem is to have an accurate enough model of the beam line

- problem shared with other integrated feedback methods
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Some Simulation Procedure

• Assumed errors

- σK/K = 0.01

- σBPMscale = 0.1

- σcorrectorscale = 0.1

- ∆corrector = 0.1µm

- σBPMres = 1µm

• ATL ground motion assumed for 3 × 106s with A = 0.5 × 10−6µm/s/m

• For MICADO 10 correctors are used

• For one-to-one correction all correctors are used (can be improved)
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Results
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One-To-One Results (BPM resolution 10µm)
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