

Damping Ring Lectures
Lecture A3, Part 1 – Damping Ring Basics
 Introduction to Damping Rings
 General Linear Beam Dynamics
Lecture A3, Part 2 – Low Emittance Ring Design
 Radiation Damping and Equilibrium Emittance
 Damping Ring Lattices
Lecture A3, Part 3 – Damping Ring Technical Systems
 Systems Overview
 Review of Selected Systems for ILC and CLIC
 R&D Challenges
Lecture A3, Part 4 – Beam Dynamics
 Overview of Impedance and Instability Issues
 Review of Selected Collective Effects
 R&D Challenges
October 31 2010 A3 Lectures: Damping Rings - Part 1 2

Damping Rings Lecture – Part 1 Our objectives for today's lecture are to: Examine the role of the damping rings in the ILC accelerator complex; Review the parameters of the CLIC and ILC damping rings and identify key challenges in the design and construction of these machines: Review the basic physics of storage rings including the linear beam dynamics; Looking ahead to tomorrow: Review radiation damping and equilibrium emittance; Apply the above principles to the CLIC and ILC damping rings to begin to understand the major *design choices* that have been made October 31, 2010 A3 Lectures: Damping Rings - Part 1

Damping Rings Introduction

- Role of Damping Rings

- ILC Damping Ring Parameters and Design Issues
- The Issue of Design Optimization
- CLIC Damping Ring Parameters and Design Issues
- Summary

General Linear Beam Dynamics

- Storage Ring Equations of Motion
- Betatron Motion
- Twiss Parameters
- Emittance
- Coupling
- Dispersion
- Chromaticity

October 31, 2010

A3 Lectures: Damping Rings - Part 1

DR Reference Design Parameters

By the end of the first 2 days of lectures, the goal is for each of you to be able to explain the reasons that the parameters in this table have the values that are specified. *Caveat: Some parameters have already been changed*

By the end of the DR lectures, you should be able to identify and explain why several of these parameters are *(or already have been)* candidates for further optimization.

So, let's begin our tour of ring dynamics and what these parameters mean...

October 31, 2010

	<u>U</u>		
in of	Parameter	Units	Value
/5 01	Energy	GeV	5.0
h of you	Circumference	km	6.695
acone	Nominal # of bunches & particles/bunch		2625@2.0×1010
as0115	Maximum # of bunches & particles/bunch		5534@1.0×1010
table	Average current	A	0.4
onified	Energy loss per turn	MeV	8.7
ecilieu.	Beam power	MW	3.5
have	Nominal bunch current	mA	0.14
	RF Frequency	MHz	650
	Total RF voltage	MV	24
	RF bucket height	%	1.5
es vou	Injected betatron amplitude, Ax+ Av	m∙rad	0.09
oo, you	Equilibrium normalized emittance, $\gamma \epsilon_x$	μm∙rad	5.0
na	Chromaticity, χ_x/χ_y		-63/-62
e	Partition numbers, J _x		0.9998
hours	J _y		1.0000
nave	J		2.0002
r	Harmonic number, h		14,516
	Synchrotron tune, vs		0.067
	Synchrotron frequency, fs	kHz	3.0
	Momentum compaction, α_c		4.2 × 10 ⁻⁴
na	Horizontal/vertical betatron tunes, $\nu_x\!/\nu_y$		52.40/49.31
ng	Bunch length, σ_z	mm	9.0
	Momentum spread, opp/p		1.28 × 10 ⁻³
	Horizontal damping time, τ_x	ms	25.7
	Longitudinal damping time, τ_{z}	ms	12.9
A3 Lectures:	Damping Rings - Part 1		9

	ILC Damping Ring Design Inputs			
A da su W the	number of parameters in the p mping rings (or can be direct mmarizes these critical interfa e will examine these requirem en look at requirements comir e DRs.	previous table any y inferred from s ace issues. hents from the pa ng from other su	re (essentially) design inputs for the such inputs). The table below erspective of the collision point first an b-systems downstream and upstream	d of
	Particles per bunch	1×10 ¹⁰ - 2×10 ¹⁰	Upper limit set by disruption at IP.	
	Max. Avg. current in main linac	~9 mA	Upper limit set by RF technology.	
	Machine repetition rate	5 Hz	Set by cryogenic cooling capacity. Partially determines required damping time.	
	Max. Linac RF pulse length	~1 ms	Upper limit set by RF technology.	
	Min. Particles per machine pulse	~5.6×10 ¹³	Lower limit set by luminosity goal.	
	Injected normalized emittance	0.01 m-rad	Set by positron source. Partially determines required damping time.	
	Injected energy spread	±0.5%	Set by positron source.	
	Injected betatron amplitude $(A_x + A_y)$	0.09 m-rad	Set by positron source.	
	Extracted normalized emittances	8 μm horizontally 20 nm vertically	Set by luminosity goal.	
	Max. Extracted bunch length	9 mm (⇔6 mm)	Upper limit set by bunch compressors.	
	Max. Extracted energy spread	0.15%	Upper limit set by bunch compressors.	
ρo	on't forget, however, that these parameters are the result of a great deal of back-and-			

Don't forget, however, that these parameters are the result of a great deal of back-andforth negotiation between sub-systems and between accelerator and HEP physicists. Thus they represent a mix of technological limits and physics desires...

A3 Lectures: Damping Rings - Part 1

October 31, 2010

The principle parameter driver is the production of luminosity at the collision point

$$\mathcal{L} = \frac{N^2 f_{coll}}{4\pi \sigma_x \sigma_y} \mathcal{H}_D$$

where

N is the number of particles per bunch (assumed equal for all bunches) $f_{\rm coll}$ is the overall collision rate at the interaction point (IP)

 σ_x and σ_y are the horizontal and vertical beam sizes (assumed equal for

all bunches)

 $\mathcal{H}_{\!\mathsf{D}}$ is the luminosity enhancement factor

Ideally we want:

- High intensity bunches
- High repetition rate
- Small transverse beam sizes

October 31, 2010

A3 Lectures: Damping Rings - Part 1

12

Arriving at a design			
We have now looked at several interface issues between the damping rings and the rest of the accelerator complex			
– Train structure			
 Equilibrium emittance requirements 			
 Bunch length requirements 			
 Acceptance of ring 			
 Timing structure 			
There are various choices that can be made to design a ring at this point			
 Will look at a few examples to understand the design evaluations that are required 			
 Design choices must be carefully matched to likely paths of evolution of the overall machine design 			
October 31, 2010 A3 Lectures: Damping Rings - Part 1 21			

October 31, 2010

A3 Lectures: Damping Rings - Part 1

	Optimization Issues - III		
Example 3: – Wide kicker injection/extr – Wide kicker by-bunch init	Technical Contraints: High Voltage Kickers pulse	-	
 Wide kicker width) will be reliability, mi 	pulse ⇔ relatively fewer kicker structures (matched to pulse e required in the ring (minimize impedance issues, improve nimize cost)	e	
 Wide kicker extraction 	pulse		
 Narrow kicker matching wit 	er pulse ⇔ higher bandwidth requires careful impedance h kicker structure		
 Narrow kicket and cost cor 	er pulse ⇒ many short kicker structures required (reliability incerns)		
 Narrow kicket the ILC RDR 	er pulse ⇔ high voltage pulses beyond state-of-the-art when t was published	n	
October 31, 2010	A3 Lectures: Damping Rings - Part 1	24	

Optimization Issues - V		
Example 5:	Physics Requests	
– Provide wi	der energy range for producing luminosity ⇒ for the ILC, this	
affects the	positron production mode	
– Positron pro-	roduction at fixed energy point in main linac ⇒ if want to	
explore a l	ower energy, need to produce positrons on one pulse and	
then chang	ge the acceleration in the ML for collisions on a separate pulse	
– Two pulse	configurations ⇔ positron damping ring only filled 50% of time	
– 50% duty o	cycle ⇔ new RF system design	
 50% duty of can be ma Lower pos 	cycle ⇔ increase damping rate so that 5Hz pulses for collision intained itron production energy ⇔ poorer production and inability to	
achieve de	esired standard operating parameters	
– Lower pos	itron production energy ⇔ potentially unacceptable impact on	
the positro	in target design	
October 31, 2010	A3 Lectures: Damping Rings - Part 1 26	

CLIC DR Design		
Present state of the CLIC DR Design	Parameters	Value
	Energy [GeV]	2.86
	Circumference [m]	420.56
As you may already be able to see	Coupling	0.0013
As you may alleady be able to see,	Energy loss/turn [MeV]	4.2
these parameters are very different from	RF voltage [MV]	4.9
the ILC DR case	Natural chromaticity x / y	-168/-60
	Momentum compaction factor	8e-5
	Damping time x / s [ms]	1.9/ 0.96
This is driven primarily by the	Dynamic aperture x / y [σ _{inj}]	30 / 120
differences between the hot and cold	Number of dipoles/wigglers	100/52
	Cell /dipole length [m]	2.36 / 0.43
main linac RF design	Dipole/Wiggler field [T]	1.4/2.5
	Bend gradient [1/m ²]	-1.10
	Max. Quad. gradient [T/m]	73.4
	Max. Sext. strength [kT/m ²]	6.6
	Phase advance x / z	0.452/0.05 6
	Bunch population, [109]	4.1
	IBS growth factor	1.4
	Hor./ Ver Norm. Emittance [nm.rad]	400 / 4.5
October 31, 2010 A3 Lectures: Damping Rings - Pa	Bunch length [mm]	1.6 29

Some ILC-CLIC Comparisons			
Parameter	Units	ILC DR (RDR)	CLIC DR
Energy	GeV	5.0	2.86
Circumference	km	6.695	0.42056
Nominal # of bunches & particles/bunch		2625@2.0×10 ¹⁰	312@0.41×10 ¹⁰
Macropulse Repetition Rate	Hz	5	50
Average current	Α	0.4	0.15
Energy loss per turn	MeV	8.7	4.2
RF Frequency	MHz	650	2000
Total RF voltage	MV	24	4.9
Equilibrium normalized emittance, $\gamma \epsilon_x$	μm∙rad	5.0	0.4
Natural Chromaticity, χ_x/χ_v		-63/-62	-168/-60
Momentum compaction, α_{c}		4.2 × 10 ⁻⁴	8 × 10 ⁻⁵
Bunch length, σ_z	mm	9.0	1.6
Momentum spread, σ _n /p		1.3 × 10 ⁻³	1.4 × 10 ⁻³
Horizontal damping time, τ_x	ms	25.7	1.9
Longitudinal damping time, τ_z	ms	12.9	0.96
October 31, 2010 A3 Lectures	: Damping Rings -	Part 1	30

- Target Emittance sensitive to:

- IBS, which must be directly taken into account it's not a small perturbation which is unlike any other rings of this type
- E_{ring}
- Achievable wiggler parameters
- A very strongly focusing lattice requires particular care with:
 - Magnet strengths
 - · Alignment tolerances

Collective Instabilities

- Electron Cloud in the positron ring
- Fast Ion Instability in the electron ring
- Space charge plays a major role in the energy and circumference choice

October 31, 2010

Summary At this point we have completed an overview of some of the key design issues for the CLIC and ILC damping rings These rings offer a range of challenges both to the lattice designers as well as the technical designers who must come up with reliable implementations of hardware that meet the design specifications I hope that you walk away from this portion of the lecture with an appreciation for how complicated trade-offs are required to meet aggressive physics specifications In the next part of this lecture we will spend some time looking at the basic physics of storage rings in order to provide further insight into the details of such decisions October 31, 2010 A3 Lectures: Damping Rings - Part 1 37

Storage Ring Basics Now we will begin our review of storage ring basics. In particular, we will cover: - Ring Equations of Motion - Betatron Motion - Emittance - Transverse Coupling - Dispersion and Chromaticity - Momentum Compaction Factor - Radiation Damping and Equilibrium Beam Properties

October 31, 2010

A3 Lectures: Damping Rings - Part 1

 $\begin{array}{l} \begin{array}{l} \hline \textbf{Magnetic Field Multipole Expansion} \\ \hline \textbf{Magnetic elements with 2-dimensional fields of the form} \\ \hline \vec{B} = B_x(x,y)\hat{x} + B_y(x,y)\hat{y} \\ \hline \textbf{Can be expanded in a complex multipole expansion:} \\ \hline B_y(x,y) + iB_x(x,y) = B_0 \sum_{n=0}^{\infty} (b_n + ia_n)(x + iy)^n \\ \hline \textbf{with } b_n = \frac{1}{n!B_0} \frac{\partial^n B_y}{\partial x^n} \bigg|_{(x,y)=(0,0)} \\ \hline \textbf{and } a_n = \frac{1}{n!B_0} \frac{\partial^n B_x}{\partial x^n} \bigg|_{(x,y)=(0,0)} \\ \hline \textbf{In this form, we can normalize to the main guide field strength,} \\ -B\hat{y}, \text{ by setting } b_0=1 \text{ to yield:} \\ \hline \frac{1}{B\rho} \Big(B_y + iB_x \Big) = \frac{e}{p_0} \Big(B_y + iB_x \Big) = \mp \frac{1}{\rho} \sum_{n=0}^{\infty} (b_n + ia_n)(x + iy)^n \text{ for } \pm q \\ \hline \ \textbf{Magnetic elements with } \frac{1}{B\rho} \Big(B_y + iB_x \Big) = \frac{1}{B\rho} \frac{\partial^n B_x}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with } \frac{\partial^n B_y}{\partial x^n} \Big|_{x=0} \\ \hline \textbf{Magnetic elements with$

Multipole Moments			
Upright Fields	Skew Fields		
Dipole:	Dipole ($\theta = 90^{\circ}$):		
$\frac{e}{p_0}B_x = 0 \qquad \qquad \frac{e}{p_0}B_y = \kappa_x$	$\frac{e}{p_0}B_x = -\kappa_y \qquad \qquad \frac{e}{p_0}B_y = 0$		
Quadrupole:	Quadrupole ($\theta = 45^{\circ}$):		
$\frac{e}{P_0}B_x = ky \qquad \qquad \frac{e}{P_0}B_y = kx$	$\frac{e}{p_0}B_x = -k_{skew}x \qquad \frac{e}{p_0}B_y = k_{skew}y$		
Sextupole:	Sextupole ($\theta = 30^{\circ}$):		
$\frac{e}{p_0}B_x = mxy \qquad \frac{e}{p_0}B_y = \frac{1}{2}m(x^2 - y^2)$	$\frac{e}{p_0}B_x = -\frac{1}{2}m_{skew}\left(x^2 - y^2\right)$		
	$\frac{e}{p_0}B_y = m_{skew}xy$		
Octupole:	Octupole ($\theta = 22.5^{\circ}$):		
$\frac{e}{p_0}B_x = \frac{1}{6}r\left(3x^2y - y^3\right)$	$\frac{e}{p_0}B_x = -\frac{1}{6}r_{skew}\left(x^3 - 3xy^2\right)$		
$\frac{e}{p_0}B_y = \frac{1}{6}r\left(x^3 - 3xy^2\right)$	$\frac{e}{p_0}B_y = \frac{1}{6}r_{skew}\left(3x^2y - y^3\right)$		
October 31, 2010 A3 Lectures: Dam	ping Rings - Part 1 43		

Equations of Motion (Hill's Equation)

We next want to consider the equations of motion for a ring with only guide (dipole) and focusing (quadrupole) elements:

$$B_{y} = \mp B_{0} + \frac{p_{0}}{e}kx = B_{0}(\rho kx \mp 1) \text{ and } B_{x} = \frac{p_{0}}{e}ky = B_{0}\rho kx$$

Taking $p=p_0$ and expanding the equations of motion to first order in x/ρ and y/ρ gives:

$$x'' + K_{x}(s)x = 0, \qquad K_{x}(s) = \frac{1}{\rho^{2}(s)} \mp k(s)$$

$$y'' + K_{y}(s)y = 0, \qquad K_{y}(s) = \pm k(s)$$

also commonly
denoted as k_{1}

where the upper/low signs are for a positively/negatively charged particle.

Solutions to Hill's EquationLet's begin by considering constant K=k:
x'' + kx = 0x'' + kx = 0where x now represents either x or y. The 3 solutions are: $x(s) = a \sin(\sqrt{ks}) + b \cos(\sqrt{ks}), \quad k > 0$ Focusing Quadrupole $x(s) = as + b, \quad k = 0$ Drift Region $x(s) = a \sinh(\sqrt{|k|s}) + b \cosh(\sqrt{|k|s}), \quad k < 0$ Defocusing QuadrupoleFor each of these cases, we can solve for initial conditions andrecast in 2×2 matrix form: $\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$ $\vec{x} = \mathbf{M}(s|s_0)\vec{x}_0$ October 31, 2010

The Envelope EquationsApplication of the previous transfer matrix to a full turn and direct
comparison with the Courant-Snyder form yields:
 $w^2 = \beta$
 $\alpha = -ww' = -\frac{\beta'}{2}$
the betatron envelope equation becomes $\frac{1}{2}\beta'' + K\beta - \frac{1}{\beta}\left[1 + \frac{\beta'^2}{4}\right] = 0$
and the transfer matrix in terms of the Twiss parameters can
immediately be written as: $M\left(s_2|s_1\right) = \left(\begin{array}{c} \sqrt{\frac{\beta_2}{\beta_1}}\left(\cos\Delta\psi + \alpha_1\sin\Delta\psi\right) & \sqrt{\beta_1\beta_2}\sin\Delta\psi\\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\Delta\psi + \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1\beta_2}}\cos\Delta\psi & \sqrt{\frac{\beta_1}{\beta_2}}\left(\cos\Delta\psi - \alpha_2\sin\Delta\psi\right) \end{array} \right)$ Determine the second of the transfer matrix in terms of the Twiss parameters can
immediately be written as:M(s_2|s_1) = \left(\begin{array}{c} \sqrt{\frac{\beta_2}{\beta_1}}\left(\cos\Delta\psi + \alpha_1\sin\Delta\psi\right) & \sqrt{\beta_1\beta_2}\sin\Delta\psi\\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\Delta\psi + \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1\beta_2}}\cos\Delta\psi & \sqrt{\frac{\beta_1}{\beta_2}}\left(\cos\Delta\psi - \alpha_2\sin\Delta\psi\right) \end{array} \right)Determine the second of the transfer matrix in terms of the Twiss parameters can
immediately be written as:M(s_2|s_1) = \left(\begin{array}{c} \sqrt{\frac{\beta_2}{\beta_1}}\left(\cos\Delta\psi + \alpha_1\sin\Delta\psi\right) & \sqrt{\beta_1\beta_2}\sin\Delta\psi\\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\sin\Delta\psi + \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1\beta_2}}\cos\Delta\psi & \sqrt{\frac{\beta_1}{\beta_2}}\left(\cos\Delta\psi - \alpha_2\sin\Delta\psi\right) \end{array} \right)Determine the second of the transfer matrix in terms of the Twiss parameters can
immediately be written as:M(s_2|s_1) = \left(\begin{array}{c} \sqrt{\frac{\beta_2}{\beta_1}}\left(\cos\Delta\psi + \alpha_1\sin\Delta\psi\right) & \sqrt{\beta_1\beta_2}\sin\Delta\psi\\ -\frac{1+\alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}}\cos\Delta\psi & \sqrt{\frac{\beta_1}{\beta_2}}\left(\cos\Delta\psi - \alpha_2\sin\Delta\psi\right) \right)Determine terms the term of the transfer term of the term of terms ter

Coupling

Up to this point, the equations of motion that we have considered have been independent in x and y. An important issue for all accelerators, and particularly for damping rings which attempt to achieve a very small vertical emittance, is coupling between the two planes. For the damping ring, we are primarily interested in the coupling that arises due to small rotations of the quadrupoles. This introduces a *skew quadrupole* component to the equations of motion.

$$x'' + K_x(s)x = 0 \implies x'' + K_x(s)x + k_{skew}y = 0$$

$$y'' + K_y(s)y = 0 \implies y'' + K_y(s)y + k_{skew}x = 0$$

Another skew quadrupole term arises from "feed-down" when the closed orbit is displaced vertically in a sextupole magnet. In this case the effective skew quadrupole moment is given by the product of the sextupole strength and the closed orbit offset

 $k_{skew} = my_{co}$

October 31, 2010

A3 Lectures: Damping Rings - Part 1

Coupling For uncoupled motion, we can convert the 2D (x,x') and (y,y')transfer matrices to 4D form for the vector (x, x', v, v'): $\mathbf{M}_{4\mathrm{D}}\left(s\left|s_{0}\right.\right) = \begin{pmatrix} \mathbf{M}_{\mathrm{focusing}} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathrm{defocusing}} \end{pmatrix} = \begin{pmatrix} \mathbf{M}_{\mathrm{F}} & \mathbf{0} \\ \mathbf{0} & \mathbf{M}_{\mathrm{D}} \end{pmatrix}$ where we have arbitrarily chosen this case to be focusing in x. The matrix is block diagonal and there is no coupling between the two planes. If the quadrupole is rotated by angle θ , the transfer matrix becomes: $\mathbf{M}_{skew} = \begin{pmatrix} \mathbf{M}_{F} \cos^{2} \theta + \mathbf{M}_{D} \sin^{2} \theta & \sin \theta \cos \theta \left(\mathbf{M}_{D} - \mathbf{M}_{F} \right) \\ \sin \theta \cos \theta \left(\mathbf{M}_{D} - \mathbf{M}_{F} \right) & \mathbf{M}_{D} \cos^{2} \theta + \mathbf{M}_{F} \sin^{2} \theta \end{pmatrix}$ and motion in the two planes is coupled. October 31, 2010 A3 Lectures: Damping Rings - Part 1

Coupling and Emittance Later in this lecture series we will look in greater detail at the sources of vertical emittance for the damping rings. In the absence of coupling and ring errors, the vertical emittance of a ring is determined by the the radiation of photons and the fact that emitted photons are randomly radiated into a characteristic cone with half-angle $\theta_{1/2} \sim 1/\gamma$. This quantum limit to the vertical emittance is generally quite small and can be ignored for presently operating storage rings. Thus the presence of betatron coupling becomes one of the primary sources of vertical emittance in a storage ring.

October 31, 2010

58

Dispersion Function and Momentum Compaction The dispersion function satisfies: $D'' + K(s)D = 1/\rho$ with the boundary conditions: D(s + L) = D(s); D'(s + L) = D'(s)The solution can be written as the sum of the solution to the homogenous equation and a particular solution: $\begin{pmatrix} D(s_2) \\ D'(s_2) \end{pmatrix} = \mathbf{M}(s_2|s_1) \begin{pmatrix} D(s_1) \\ D'(s_1) \end{pmatrix} + \begin{pmatrix} d \\ d' \end{pmatrix}$ which can be expressed in a 3×3 matrix form as: $\begin{pmatrix} D(s_2) \\ D'(s_2) \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{M}(s_2|s_1) & \overline{d} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} D(s_1) \\ D'(s_1) \\ 1 \end{pmatrix}, \quad \text{where } \overline{d} = \begin{pmatrix} d \\ d' \end{pmatrix}$

Effect of a Gradient ErrorWe consider a local perturbation of the focusing strength $K = K_0 + \Delta K$. The effect of ΔK can be represented by including athin lens transfer matrix in the one-turn matrix. Thus we have $\mathbf{M}_{\Delta K} = \begin{pmatrix} 1 & 0 \\ -\Delta K \ell & 1 \end{pmatrix}$ and $\mathbf{M}_{1-turn} = \begin{pmatrix} \cos \Phi + \alpha \sin \Phi & \beta \sin \Phi \\ -\gamma \sin \Phi & \cos \Phi - \alpha \sin \Phi \end{pmatrix}$ $= \begin{pmatrix} \cos \Phi_0 + \alpha \sin \Phi_0 & \beta \sin \Phi_0 \\ -\gamma \sin \Phi_0 & \cos \Phi_0 - \alpha \sin \Phi_0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\Delta K \ell & 1 \end{pmatrix}$ With $\Phi = \Phi_0 + \Delta \Phi$, we can take the trace of the one-turn matrix togive: $\cos (\Phi_0 + \Delta \Phi) = \cos \Phi_0 - \frac{1}{2} \beta \Delta K \ell \sin \Phi_0$ October 31, 2010

Effect of a Gradient Error

Using the relation: $\cos(\Phi_0 + \Delta \Phi) = \cos \Delta \Phi \cos \Phi_0 - \sin \Delta \Phi \sin \Phi_0$

we can identify:

$$\Delta \Phi \approx \frac{1}{2} \beta \Delta K \ell$$

Thus we can write: $\Delta Q = \frac{1}{4\pi} \beta \Delta K \ell$

and we see that the result of gradient errors is a shift in the betatron tune. For a distributed set of errors, we then have:

$$\Delta Q = \frac{1}{4\pi} \oint \beta \Delta K ds$$

which is the result we need for evaluating chromatic aberrations. Note that the tune shift will be positive/negative for a focusing/ defocusing quadrupole.

A3 Lectures: Damping Rings - Part 1

October 31, 2010

Chromaticity

We can now write the betatron tune shift due to chromatic aberration as:

$$\Delta Q = \frac{1}{4\pi} \oint \beta \Delta K ds \approx -\frac{\delta}{4\pi} \oint \beta K ds$$

The chromaticity is defined as the change in tune with respect to the momentum deviation:

$$C = \frac{\partial Q}{\partial \delta}$$

Because the focusing is weaker for a higher momentum particle, the natural chromaticity due to quadrupoles is always negative. This can be a source of instabilities in an accelerator. However, the fact that a momentum deviation results in a change in trajectory (the dispersion) as well as the change in focusing strength, provides a route to mitigate this difficulty.

October 31, 2010

66

	Bibliography
1.	The ILC Collaboration, International Linear Collider Reference Design Report 2007, ILC-REPORT-2007-001, <u>http://ilcdoc.linearcollider.org/record/6321/files/ILC_RDR-August2007.pdf</u> .
2.	S. Y. Lee, Accelerator Physics, 2 nd Ed., (World Scientific, 2004).
3.	J. R. Rees, Symplecticity in Beam Dynamics: An Introduction, SLAC-PUB-9939, 2003.
4.	K. Wille, <i>The Physics of Particle Accelerators – an introduction,</i> translated by J. McFall, (Oxford University Press, 2000).
5.	S. Guiducci & A. Wolski, Lectures from 1 st International Accelerator School for Linear Colliders, Sokendai, Hayama, Japan, May 2006.
6.	A. Wolski, Lectures from 2 nd International Accelerator School for Linear Colliders, Erice, Sicily, October 2007.
7.	A. Wolski, Lectures from 4 th International Accelerator School for Linear Colliders, Beijing, China, October 2009.
8.	A. Wolski, J. Gao, S. Guiducci, ed., Configuration Studies and Recommendations for the ILC Damping Rings, LBNL-59449 (2006). Available online at: https:// wiki.lepp.cornell.edu/ilc/pub/Public/DampingRings/ConfigStudy/ DRConfigRecommend.pdf
9.	Various recent meetings of the ILC and CLIC damping ring design teams.
Octo	ber 31, 2010 A3 Lectures: Damping Rings - Part 1 69